Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The functio...Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The function of this neck hinge for controlling processive movement,however,remains unclear.Methods We made a series of modifications to the neck hinges of KIF13B and KIF1A and tested their movement using a single-molecule motility assay.Results In KIF13B,the insertion of flexible residues before or after the proline differentially impacts the processivity or velocity,while the removal of this proline increases the both.In KIF1A,the deletion of entire flexible neck hinge merely enhances the processivity.The engineering of these hinge-truncated necks of kinesin-3 into kinesin-1 similarly boosts the processive movement of kinesin-1.Conclusion The neck hinge in kinesin-3 controls its processive movement and proper modifications tune the motor motility,which provides a novel strategy to reshape the processive movement of kinesin motors.展开更多
Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer...Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer cell eradication. However, uncontrolled proliferation and metabolic activities of these cells result in abnormalities in nutrient levels, hypoxia, and immunosuppression within the tumor microenvironment (TME). These factors constrain the efficacy of traditional treatments by promoting drug resistance, recurrence, and metastasis. Nanomaterials (NMs), such as nanozymes, can exhibit enzymatic activity similar to that of natural enzymes and offer a promising avenuefor the direct modification of the TME through catalytic oxidation-reduction processes. Moreover, they can serve as sensitizers or drug deliverycarriers, enhancing the efficacy of traditional treatment methods. Recently, NMs have garnered significant attention from oncologists. Thisreview begins with an overview of the composition and unique characteristics of the TME. Subsequently, we comprehensively exploredthe application of NMs in the treatment of HNSCC. Finally, we discuss the potential prospects and challenges associated with usingNMs in biomedical research.展开更多
基金supported by grants from the Beijing Natural Science Foundation(5242021)the Strategic Priority Research Program of CAS(XDB37020302)+2 种基金the CAS Project for Young Scientists in Basic Research(075)The National Natural Science Foundation of China(32071191,32371273)the Chinese National Programs for Brain Science and Brain-like Intelligence Technology(2022ZD0205800)。
文摘Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The function of this neck hinge for controlling processive movement,however,remains unclear.Methods We made a series of modifications to the neck hinges of KIF13B and KIF1A and tested their movement using a single-molecule motility assay.Results In KIF13B,the insertion of flexible residues before or after the proline differentially impacts the processivity or velocity,while the removal of this proline increases the both.In KIF1A,the deletion of entire flexible neck hinge merely enhances the processivity.The engineering of these hinge-truncated necks of kinesin-3 into kinesin-1 similarly boosts the processive movement of kinesin-1.Conclusion The neck hinge in kinesin-3 controls its processive movement and proper modifications tune the motor motility,which provides a novel strategy to reshape the processive movement of kinesin motors.
基金supported by medical science research joint construction project of Henan(71188)Henan Provincial Department of Education under grant no.21B320008.
文摘Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer cell eradication. However, uncontrolled proliferation and metabolic activities of these cells result in abnormalities in nutrient levels, hypoxia, and immunosuppression within the tumor microenvironment (TME). These factors constrain the efficacy of traditional treatments by promoting drug resistance, recurrence, and metastasis. Nanomaterials (NMs), such as nanozymes, can exhibit enzymatic activity similar to that of natural enzymes and offer a promising avenuefor the direct modification of the TME through catalytic oxidation-reduction processes. Moreover, they can serve as sensitizers or drug deliverycarriers, enhancing the efficacy of traditional treatment methods. Recently, NMs have garnered significant attention from oncologists. Thisreview begins with an overview of the composition and unique characteristics of the TME. Subsequently, we comprehensively exploredthe application of NMs in the treatment of HNSCC. Finally, we discuss the potential prospects and challenges associated with usingNMs in biomedical research.