期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Biomechanics and mechanobiology of the bone matrix 被引量:2
1
作者 Chunyang Ma Tianming Du +1 位作者 Xufeng Niu Yubo Fan 《Bone Research》 SCIE CAS CSCD 2022年第4期644-660,共17页
The bone matrix plays an indispensable role in the human body,and its unique biomechanical and mechanobiological properties have received much attention.The bone matrix has unique mechanical anisotropy and exhibits bo... The bone matrix plays an indispensable role in the human body,and its unique biomechanical and mechanobiological properties have received much attention.The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength.These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body.None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure.Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants,bone biomimetic materials and scaffolds for bone tissue repair in humans,as well as for biomimetic applications in other fields.In providing mechanical support to the human body,bone is constantly exposed to mechanical stimuli.Through the study of the mechanobiology of the bone matrix,the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration.This paper summarizes the biomechanical properties of the bone matrix and their biological significance,discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties,and studies the effects of mechanical stimuli,especially fluid shear stress,on the components of the bone matrix,cells and their interactions.The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described. 展开更多
关键词 STRUCTURE TOUGHNESS MATRIX
下载PDF
Simulation Analysis of Deformation Control for Magnetic Soft Medical Robots
2
作者 Jingxi Wang Baoyu Liu +2 位作者 Edmond Q.Wu Jin Ma Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期794-796,共3页
Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues ... Dear Editor,This letter presents a biocompatible cross-shaped magnetic soft robot and investigates its deformation mode control strategy through COMSOL modeling and simulation.Magnetic soft robots offer novel avenues for precise treatment within intricate regions of the human body. 展开更多
关键词 ROBOT SIMULATION COMSOL
下载PDF
Functionalized carbon dots for corrosion protection:Recent advances and future perspectives
3
作者 Li Zhao Jinke Wang +5 位作者 Kai Chen Jingzhi Yang Xin Guo Hongchang Qian Lingwei Ma Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2112-2133,共22页
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial... Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented. 展开更多
关键词 carbon dots corrosion protection corrosion inhibitors SELF-HEALING SELF-REPORTING
下载PDF
Coherent Raman scattering imaging of lipid metabolism in cancer
4
作者 Shuo Zhang Yexuan He Shuhua Yue 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第3期3-12,共10页
Cancer cells dysregulate lipid metabolism to accelerate energy production and biomolecule synthesis for rapid growth.Lipid metabolism is highly dynamic and intrinsically heterogeneous at the single cell level.Although... Cancer cells dysregulate lipid metabolism to accelerate energy production and biomolecule synthesis for rapid growth.Lipid metabolism is highly dynamic and intrinsically heterogeneous at the single cell level.Although°uorescence microscopy has been commonly used for cancer research,bulky°uorescent probes can hardly label small lipid molecules without perturbing their biological activities.Such a challenge can be overcome by coherent Raman scattering(CRS)microscopy,which is capable of chemically selective,highly sensitive,submicron resolution and high-speed imaging of lipid molecules in single live cells without any labeling.Recently developed hyperspectral and multiplex CRS microscopy enables quantitative mapping of various lipid metabolites in situ.Further incorporation of CRS microscopy with Raman tags greatly increases molecular selectivity based on the distinct Raman peaks well separated from the endogenous cellular background.Owing to these unique advantages,CRS microscopy sheds new insights into the role of lipid metabolism in cancer development and progression.This review focuses on the latest applications of CRS microscopy in the study of lipid metabolism in cancer. 展开更多
关键词 Coherent Raman scattering microscopy cancer metabolism lipid metabolism
下载PDF
In vitro and in vivo evaluation of micro-alloyed magnesium for potential application in alveolar bone fixation screws
5
作者 Hongyan Tang Qing Li +3 位作者 Min Li Xuenan Gu Chengkung Cheng Yubo Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期62-69,共8页
Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental pra... Alveolar bone augmentation with fixation screws has difficulties such as non-degradable materials that could lead to secondary surgery and insufficient osseointegration due to the subgingival environment in dental practice.With degradability and a high degree of osteogenesis,Mg alloy is a successful biodegrad-able material for orthopedic applications,and its application in dentistry has made certain progress.How-ever,considering the unique subgingival healing properties of oral implants,there is still a gap between the desired material properties for clinical applications and available materials.Indeed,studies on the use of Mg-based fixation screws for dentistry applications are still rare.In this study,we reported a magnesium alloy with low combined addition of strontium and lanthanum.The mechanical properties,degradation behavior,osteogenesis,and gingival compatibility were systematically investigated for assess-ing its potential application in alveolar bone fixation screws.With the alloying element content restricted to 0.3 wt.%,Mg-Sr-La alloy still exhibited good mechanical properties,with yield tensile and compressive strength twice higher than those of pure Mg.The in vitro degradation rate of this alloy was 0.10 mm y-1,which was slightly slower than high-purity Mg.The indirect and direct cell assay confirmed the elevated osteoblastic differentiation of MC3T3-E1 and migration of HGF-1 cells.Moreover,Mg-Sr-La alloy demon-strated a relatively slow degradation in the maxillary bone of Beagles.A remarkable promotion of the bone-implant contacts and significantly decreased fibrous encapsulation was observed in the subgingival environment,implying superior osseointegration of the experimental alloy than the titanium control.The empirical findings here reveal the great potential of Mg-Sr-La alloy for the application in alveolar bone fixation devices. 展开更多
关键词 Magnesium alloys Alveolar ridge augmentation Fixation screws OSSEOINTEGRATION
原文传递
Material,design,and fabrication of custom prosthetic liners for lower-extremity amputees:A review
6
作者 Xingbang Yang Ruoqi Zhao +5 位作者 Dana Solav Xuan Yang Duncan R.C.Lee Bjorn Sparrman Yubo Fan Hugh Herr 《Medicine in Novel Technology and Devices》 2023年第1期34-44,共11页
As a physical interface,a prosthetic liner is commonly used as a transition material between the residual limb and the stiff socket.Typically made from a compliant material such as silicone,the main function of a pros... As a physical interface,a prosthetic liner is commonly used as a transition material between the residual limb and the stiff socket.Typically made from a compliant material such as silicone,the main function of a prosthetic liner is to protect the residual limb from injuries induced by load-bearing normal and shear stresses.Compared to conventional liners,custom prosthetic lower-extremity(LE)liners have been shown to better relieve stress concentrations in painful and sensitive regions of the residual limb.Although custom LE liners have been shown to offer clinical benefits,no review article on their design and efficacy has yet been written.To address this shortcoming in the literature,this paper provides a comprehensive survey of custom LE liner materials,design,and fabrication methods.First,custom LE liner materials and components are summarized,including a description of commercial liners and their efficacy.Subsequently,digital methods used to design and fabricate custom LE liners are addressed,including residual limb biomechanical modeling,finite element-based design methods,and 3-D printing techniques.Finally,current evaluation methods of custom/commercial LE liners are presented and discussed.We hope that this review article will inspire further research and development into the design and manufacture of custom LE liners. 展开更多
关键词 REVIEW Custom prosthetic liner MATERIAL Design and fabrication method Digital modeling FEA-informed design Soft/flexible material 3D printing
原文传递
MV-mediated biomineralization mechanisms and treatments of biomineralized diseases
7
作者 Xuan Li Wei Zhang +1 位作者 Yubo Fan Xufeng Niu 《Medicine in Novel Technology and Devices》 2023年第1期1-14,共14页
As the quality of life improves,people pay more and more attention to health.They are concerned about the causes of diseases,and seek better treatments.The most common diseases are biomineralized diseases,four differe... As the quality of life improves,people pay more and more attention to health.They are concerned about the causes of diseases,and seek better treatments.The most common diseases are biomineralized diseases,four different kinds of typical examples among which are selected to elaborate their mechanisms and existing treatments.Whether it is tooth and bone in physiological mineralization or cartilage and blood vessel in pathological mineralization,they are all related to matrix vesicle(MV)-mediated biomineralization.MV-mediated biomineralization is the initial stage of biomineralization and the nucleation site mediating collagen mineralization.Definition,composition,biogenesis,and action mechanism of MVs are refined and expounded,especially a novel biomineralization pathway similar to exosome(EX)origin.Four differences are summarized to distinguish MVs and EXs.A series of treatments using MVs to solve biomineralized diseases such as tooth and bone defects,osteoarthritis and atherosclerosis are proposed,and the experimental extraction steps of MVs are summarized. 展开更多
关键词 Matrix vesicle BIOMINERALIZATION BIOGENESIS OSTEOARTHRITIS Atherosclerosis
原文传递
Composite double-layer microneedle loaded with traditional Chinese medicine for the treatment of androgenic alopecia
8
作者 Ruoxi Wang Jiangge Wang +3 位作者 Haiqiang Gao Xiangyi Liao Chunyang Ma Xufeng Niu 《Medicine in Novel Technology and Devices》 2023年第2期65-73,共9页
Androgenetic alopecia(AGA)is an androgen-mediated alopecia affected by both genes and hormones.Medication is a relatively common treatment.As a new drug delivery method,microneedles(MNs)can effectively break through t... Androgenetic alopecia(AGA)is an androgen-mediated alopecia affected by both genes and hormones.Medication is a relatively common treatment.As a new drug delivery method,microneedles(MNs)can effectively break through the stratum corneum barrier,deliver drugs more efficiently,and achieve better therapeutic effects.In this study,we develop a composite double-layer MN through multi-step casting fabrication using a polydimethylsiloxane mold.The needle tip was fabricated by mixed solution of chitosan and polyvinylpyrrolidone which was loaded with Polygonum multiflorum extract,and the base layer was prepared by mixed solution of polyvinyl alcohol and polyvinylpyrrolidone.In vitro mechanical tests showed that the maximum load of a single tip of the drug-loaded MN was about 3.5 N,which met the mechanical requirements of skin puncture(>1 N).The drug release experiment showed that the MN could achieve gradual drug release.In the animal experiment,pigmentation and hair regrowth occurred earlier in the Polygonum multiflorum-MN(Pm-MN)group than in the other groups,and hair growth finally appeared in almost the entire area.Compared with the AGA model mice,mice in the Pm-MN group achieved an increase in the number and diameter of hair follicles.In conclusion,the Pm-MN is scientific and feasible for treating AGA. 展开更多
关键词 Androgenetic alopecia MICRONEEDLES Hair regeneration Traditional Chinese medicine
原文传递
The Regulatory Effect of Braided Silk Fiber Skeletons with Differential Porosities on In Vivo Vascular Tissue Regeneration and Long-Term Patency
9
作者 Xili Ding Weirong Zhang +10 位作者 Peng Xu Wentao Feng Xiaokai Tang Xianda Yang Lizhen Wang Linhao Li Yan Huang Jing Ji Diansheng Chen Haifeng Liu Yubo Fan 《Research》 SCIE EI CSCD 2023年第2期247-264,共18页
The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field.Although techniques such as the bra... The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field.Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts,the effects of braided silk fiber skeletons on the porosity,remodeling,and patency in vivo have not been thoroughly investigated. 展开更多
关键词 field SKELETON thoroughly
原文传递
Comparison of stem cell characteristics between perichondral-derived stem cells and periosteal stem cells in postnatal rats
10
作者 Liu Li-Jin Fan Yu-Bo +2 位作者 Wu Xin-Tong Yang Xiao Sun Lian-Wen 《Medicine in Novel Technology and Devices》 2023年第2期198-205,共8页
Bone marrow mesenchymal stem cells(BMSCs),periosteal stem cells(PSCs),and other bone stem cells originate from embryonic bone formation,but their function and stem cell characteristics such as proliferation ability an... Bone marrow mesenchymal stem cells(BMSCs),periosteal stem cells(PSCs),and other bone stem cells originate from embryonic bone formation,but their function and stem cell characteristics such as proliferation ability and differentiation ability change at different anatomical locations.Perichondral-derived stem cells(PCSCs)are more closely related to PSCs in origin and function,usually used to be studied together with PSCs as one type of stem cell.However,this leads to the ignoration of the PCSCs'characteristics.Since the anatomical locations of these two types of stem cells diverse,PCSCs should have some differences from PSCs.In this study,the PCSCs in the perichondrium surrounding the growth plate cartilage expressed CTSK and CD200 same as PSCs.However,when compared the stem cell characteristics of PCSCs with that of PSCs,PCSCs were more elongated than PSCs in morphology and have stronger self-renewal ability,as well as stronger chondrogenic and adipogenic differentiation potentials.This study revealed the stem cell characteristics of PCSCs distinguished from PSCs,which may indicate PCSCs and PSCs should not be treated as one type of cell to research in the future. 展开更多
关键词 Perichondral-derived stem cells(PCSCs) Periosteal stem cells(PSCs) Stemness characteristics
原文传递
Effect of mechanical stresses on degradation behavior of high-purity magnesium in bone environments
11
作者 Yan Yao Jie Xia +4 位作者 Lizhen Wang Yuanming Gao Xili Ding Chao Wang Yubo Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期252-261,共10页
High-purity(HP)magnesium(Mg)has emerged as a promising biomaterial for supporting functional bone tissue.Our previous study found that mechanical stresses and the surrounding fibrotic tissue(subcuta-neous)both play cr... High-purity(HP)magnesium(Mg)has emerged as a promising biomaterial for supporting functional bone tissue.Our previous study found that mechanical stresses and the surrounding fibrotic tissue(subcuta-neous)both play crucial roles in the degradation of HP Mg.However,due to challenges in the degradation and regeneration process in vivo,it remains unclear how stress affects HP Mg degradation in bone en-vironments,limiting its further application.In this study,novel loading devices were designed and the effects of tensile and compressive stresses on HP Mg degradation in vivo and in vitro bone environments were quantitatively analyzed.In addition,bone osteointegration around HP Mg was explored preliminar-ily.Tensile stress increases the degradation rate of HP Mg in vivo and in vitro.HP Mg degradation in vivo is more sensitive to stress factors than in vitro,but the sensitivity decreases with corrosion time.The volume loss rate of HP Mg is multilinear with the applied stress and degradation time.The volume of bone tissue surrounding HP Mg is larger in the no-stress group compared to the stressed groups,which is more pronounced with increasing implantation time.These results provide valuable insights for optimiz-ing the design of HP Mg-based implants considering load conditions.This will help to achieve a balance between the degradation rate of the implant and the regeneration rate of the surrounding bone. 展开更多
关键词 High-purity magnesium Quantitative stresses DEGRADATION Bone environments In vivo and in vitro
原文传递
A systematic review of DVT and stent restenosis after stent implantation for iliac vein compression syndrome
12
作者 Hongyu Wang Anqiang Sun +4 位作者 Yuan Li Yifeng Xi Yubo Fan Xiaoyan Deng Zengsheng Chen 《Medicine in Novel Technology and Devices》 2022年第3期1-6,共6页
Iliac vein compression syndrome(IVCS)is a common venous disease caused by joint compression of the right common iliac artery and the lumbosacral vertebrae.The compression of iliac vein not only causes venous hypertens... Iliac vein compression syndrome(IVCS)is a common venous disease caused by joint compression of the right common iliac artery and the lumbosacral vertebrae.The compression of iliac vein not only causes venous hypertension in the lower extremities,but also induces venous valve dysfunction and superficial varicose veins in lower extremities.Moreover,the compression of iliac vein is an important potential factor for iliofemoral vein thrombosis.Currently,open surgery and stent implantation are the main treatment for IVCS.Due to the advantages of minimally invasive and postoperative patency,stent implantation for IVCS has gradually become the standard treatment.However,when the stent is implanted into the iliac vein to treat IVCS,the complications,such as restenosis,deep vein thrombosis(DVT)appear,which affect the patency of stent and hamper the patient recovery.Up to now,the mechanism how the stent implantation induces the restenosis and DVT is still unclear.In this review,we summarized the clinical symptoms,treatment methods of IVCS and the complications after stent implantation,and analyzed the mechanism of stent restenosis and DVT,and finally discuss the iliac vein stent design specifically for treating IVCS. 展开更多
关键词 Iliac vein compression syndrome Iliac vein stent Stent treatment HEMODYNAMIC Deep venous thrombosis Stent restenosis
原文传递
Effect of mechanical stretching and substrate stiffness on the morphology,cytoskeleton and nuclear shape of corneal endothelial cells
13
作者 Ruotian Du Dongyan Li +5 位作者 Yan Huang Hui Xiao Jindong Xue Jing Ji Yun Feng Yubo Fan 《Medicine in Novel Technology and Devices》 2022年第4期267-277,共11页
Due to the limited capacity of corneal endothelial cells(CECs)division,corneal endothelial diseases have become a great challenge.The cornea is subjected to various mechanical stimuli in vivo,which may have a positive... Due to the limited capacity of corneal endothelial cells(CECs)division,corneal endothelial diseases have become a great challenge.The cornea is subjected to various mechanical stimuli in vivo,which may have a positive or negative influence.Thus,it is significant to gain an insight into the mechanism of mechanobiology of CECs for seeking more possible treatment.The purpose of this study was to determine the impacts of mechanical stretch and substrate stiffness on the morphology and fundamental cell behavior of CECs.Rabbit corneal endothelial cells(RCECs)were subjected to a 5%mechanical stretch or cultured on substrates of different stiffness.The impacts of mechanical stimulus on cell area,aspect ratio,circularity,cell density,nuclear shape,cytoskeleton,and cell viability were investigated.The expressions of the corneal endothelium-related markers ZO-1 and Na^(+)/K^(+) ATPase were also evaluated by confocal immunofluorescence microscopy in the stiffness group.Our results suggested that mechanical stretch promoted the rearrangement of the cytoskeleton while decreasing the cell circularity,nuclear area,and cell density as well as cell viability.RCECs cultured on 10 kPa substrates,which was close to the physiological stiffness of rabbit Descemet's membrane(DM),showed better cell morphology,more stable actin cytoskeleton assembly,and more robust expression of the functional marker compared with other softer or stiffer substrates.In summary,mechanical stretch and substrate stiffness have profound influences on the morphology and function of CECs,which may have implications for the understanding and possible treatment of corneal endothelial diseases. 展开更多
关键词 Corneal endothelial cells Mechanical stretch Substrate stiffness PHENOTYPE
原文传递
Design, kinematic modeling and evaluation of a novel soft prosthetic hand with abduction joints
14
作者 Yadong Yan Xiangqian Chen +1 位作者 Chang Cheng Yu Wang 《Medicine in Novel Technology and Devices》 2022年第3期98-106,共9页
This paper presents a novel tendon-driven soft prosthetic hand with 5 fingers and 9 independent actuators.A special notched structure was used as the finger joint,which brings adequate compliance to grasping.The soft ... This paper presents a novel tendon-driven soft prosthetic hand with 5 fingers and 9 independent actuators.A special notched structure was used as the finger joint,which brings adequate compliance to grasping.The soft finger has two kinds of vertically arranged joints that can produce flexion/extension and abduction/adduction motions under tension and release,enabling a three-dimensional workspace of the finger and improving the dexterity of the hand.The design and manufacture of the finger and soft hand are described in detail.An openloop kinematic model based on piecewise constant curvature of the finger was established and verified experimentally.The results show that the model could precisely predict finger movement.The slip resistance of the soft hand was tested,and the capacity to grasp objects was evaluated based on power grasp and precision grasp.With abduction joints,the proposed hand can perform various gestures and in-hand manipulations,which indicate high dexterity.This work provides a way to realize high dexterity for soft prosthetic hands. 展开更多
关键词 Prosthetic hand Soft hand design Dexterous grasping
原文传递
Experimental and finite element analysis studies of a reduction-force reducing traction method for pelvic fracture surgeries
15
作者 Jixuan Liu Ke Xu +4 位作者 Chunpeng Zhao Gang Zhu Yu Wang Xinbao Wu Wei Tian 《Medicine in Novel Technology and Devices》 2022年第1期31-39,共9页
Pelvic fracture is among the most complicated fractures in traumatic orthopedics,with high mortality and morbidity rates.The main difficulty associated with the reduction surgery is significant muscle resistance.It th... Pelvic fracture is among the most complicated fractures in traumatic orthopedics,with high mortality and morbidity rates.The main difficulty associated with the reduction surgery is significant muscle resistance.It then becomes necessary to decrease the reduction force against this strong muscle resistance,for improving surgical safety.Here,we propose a novel traction method for decreasing the reduction force during pelvic reduction,and investigate the performance of the elastic traction method on decreasing the reduction force using experimental tests and simulation-based analyses.From the experimental results,the reduction force decreased by 59.2%when 10 kg of elastic traction was applied.We also establish a musculoskeletal model of the pelvic fracture reduction,for analyzing the muscle resistance and the optimal traction force applied in reduction surgeries.The elastic traction method can counteract the muscle resistance increase in the non-traction direction owing to its flexibility.We conclude that the optimal traction force applied should be in the 10–15 kg range,and recommend adopting a dynamic traction strategy rather than continuous traction in clinical settings.Elastic traction is very promising for various surgeries that require traction,including pelvic reduction.It significantly reduces force,which can significantly reduce the physical exertion of the operating surgeon,the possibility of additional injuries to the operated patient,and promotes robot-assisted reduction surgeries. 展开更多
关键词 Reduction force of pelvic fracture Elastic traction Muscle resistance analysis
原文传递
Effects of Geometrical Characteristics of Suture on Fracture Resistance of Walnut Shell
16
作者 Peng Xu Lizhen Wang +2 位作者 Jinglong Liu Yanxian Yue Yubo Fan 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2732-2741,共10页
Nut shells have good impact and fracture resistance,but many kinds of nut shells have suture structures with low bonding strength.Therefore,the mechanism of impact and fracture resistance of nut shells as a whole is i... Nut shells have good impact and fracture resistance,but many kinds of nut shells have suture structures with low bonding strength.Therefore,the mechanism of impact and fracture resistance of nut shells as a whole is important to study,particularly given that sutures maintain low bonding strength.In this study,we investigated the effect of the geometrical characteristics of sutures(morphology,thickness,and number)on the overall fracture resistance of walnuts,based on mechanical tests of C-ring samples,microstructure analysis after cracking,quantitative analysis of suture geometric model,and numerical simulations.We found that the cracking of walnuts was mainly caused by tensile stress,and the bonding strength was approximately 2.48±0.64 MPa.We discovered that the thickness of the suture was 1.55±0.32 times thicker than the shell,which improved the fracture resistance ability by more than 28.4%.The undulating and inclined morphology of the walnut suture also increased the fracture force.Additionally,an appropriate suture number reduced the cracking of walnuts.In conclusion,our study sheds light on the physiological function of walnut sutures from a biomechanical perspective and provides useful references for designing fracture resistance measures in thin shell structures. 展开更多
关键词 Fracture resistance WALNUT Suture Bonding strength Numerical simulations BIOMECHANICS
原文传递
In vitro cell stretching devices and their applications:From cardiomyogenic differentiation to tissue engineering
17
作者 Jiangtao Zhao Fanzhe Meng +2 位作者 Jiayi Qian Yan Huang Yubo Fan 《Medicine in Novel Technology and Devices》 2023年第2期1-12,共12页
Mechanical stretch plays an important role in the control of cardiomyocyte behavior,as well as in the study of the mechanisms of cardiovascular function and pathology.The complexity involved in biological systems in v... Mechanical stretch plays an important role in the control of cardiomyocyte behavior,as well as in the study of the mechanisms of cardiovascular function and pathology.The complexity involved in biological systems in vivo has created a need for better in vitro techniques,thus a variety of cell stretching devices have been developed for a deeper understanding of cellular responses to strain.In this review,we introduce the design,functionality,and characteristics of multiple types of cell stretching devices from two and three dimensions,then discuss the research progress of promoting cardiomyogenic differentiation of stem cells by external stretching and its application in cardiac tissue engineering. 展开更多
关键词 Mechanical stretch in vitro devices Stem cell Cardiomyogenic differentiation HYDROGELS
原文传递
Sex differences in eye movements and neural oscillations during mental rotation in virtual reality
18
作者 Zhili Tang Xiaoyu Liu +9 位作者 Hongqiang Huo Min Tang Xiaofeng Qiao Duo Chen Ying Dong Linyuan Fan Jinghui Wang Xin Du Jieyi Guo Yubo Fan 《Medicine in Novel Technology and Devices》 2023年第2期152-158,共7页
Virtual reality(VR)has been a promising tool for developing visuospatial tasks.Among visuospatial tasks,mental rotation tasks are widely used in the assessment of visuospatial ability.Males have a distinct advantage i... Virtual reality(VR)has been a promising tool for developing visuospatial tasks.Among visuospatial tasks,mental rotation tasks are widely used in the assessment of visuospatial ability.Males have a distinct advantage in mental rotation ability compared to females,yet it is generally produced by investigations based on two-dimensional(2D)images on a computer screen.Sex differences in mental rotation tasks with three-dimensional(3D)objects in VR were not fully investigated.It is unclear whether the male's advantages in 2D mental rotation tasks are weakened in 3D tasks.The aim of this study was to provide new insights into the understanding of sex differences in mental rotation tasks presented in VR.Here,we developed a VR mental rotation task(VR-MRT)using 3D objects presented by a head-mounted display(HMD)and used VR-based eye tracking and electroencephalography(EEG)to examine eye movements and neural oscillations for males and females.Our results showed that females preferred a piecemeal strategy compared to males,suggesting a significant sex difference in visual strategy.More importantly,we found no significant sex differences in alpha-band and beta-band oscillations related to rotation processes of VR-MRT.These findings indicated that sex differences in the VR-MRT were mainly attributed to the selection of visual strategy rather than the rotation processes.The study helps to comprehensively understand the dominant factors contributing to the sex differences in the VR-MRT. 展开更多
关键词 Eye movements Sex differences Mental rotation Virtual reality Alpha oscillations
原文传递
Effect of 3D anchorage attachment on the alleviating tipping/extrusion of premolars for en-mass distalization of maxillary molars with clear aligners:A finite element study
19
作者 Lurong Jia Chunjuan Wang +4 位作者 Yao He Chao Wang Antonio Apicella Jinlin Song Yubo Fan 《Medicine in Novel Technology and Devices》 2023年第2期272-280,共9页
This study aimed to explore the optimal invisible orthodontic force system during the en-mass distalization of two maxillary molars to minimize the side effect of anchorage loss by changing the direction of the applic... This study aimed to explore the optimal invisible orthodontic force system during the en-mass distalization of two maxillary molars to minimize the side effect of anchorage loss by changing the direction of the application of the orthodontic force system.A high bio-fidelity 3D finite element model including maxilla,periodontal ligament,dentition,clear aligner,3D anchorage attachment and mini-implant was established.Different lengths of lateral hooks of 3D-printed anchorage attachments and mini-implant positions into the palatal alveolus were considered.A 200 g distal force was applied to the lateral hooks of different horizontal lengths(3.26 mm,6.52 mm and 9.78 mm)with the mini-implant as the application point.Using ABAQUS software,orthodontic tooth movements under 12 different clinical treatment designs were analyzed and calculated.The 3D anchorage attachment enhanced the anchorage of anterior teeth and alleviated the tipping/extrusion of premolars.In contrast to without clear aligners,length of the lateral hook had a negligible effect on both mesial tipping and buccal tipping with clear aligners,which could then be ignored.The change in mesial tipping was less and nearly remained constant despite of the different heights of the mini-implant.The 3D anchorage attachment assisted clear aligner can avoid the side effects of anterior tooth proclination caused by insufficient anchorage.The length of the lateral hook,and height of the mini-implant in this invisible orthodontic force system hardly affects the tooth movement of anchorage units.Clear aligners can effectively control the rotation and tipping of anchorage units caused by 3D anchorage attachment. 展开更多
关键词 Clear aligner ORTHODONTICS 3D printing Three-dimensional finite element ATTACHMENTS Reinforced anchorage
原文传递
Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective
20
作者 Zhengwei Li Changshun Ruan Xufeng Niu 《Medicine in Novel Technology and Devices》 2023年第1期15-33,共19页
In the field of regenerative medicine,the importance of 3D bioprinting is self-evident and nonnegligible.However,3D bioprinting technology also requires bioink with excellent performance as support material to fabrica... In the field of regenerative medicine,the importance of 3D bioprinting is self-evident and nonnegligible.However,3D bioprinting technology also requires bioink with excellent performance as support material to fabricate a multi-functional bioinspired scaffold.Collagen-based bioink is regarded as an ideal 3D bioprinting ink for its excellent biocompatibility,controllable printability and cell loading property.It is an important breakthrough in regenerative medicine with the progress of collagen-based bioink,which fabricates bioinspired scaffolds with different functions and is applied in different repair scenarios.This review summarizes the different applications of collagen-based bioink and classifies them as soft tissue and hard tissue according to the target region.The applications of target region in soft tissues include skin,cartilage,heart and blood vessels,while in hard tissues include femur,skull,teeth and spine.When the collagen-based bioink is applied in repairing soft tissue,the requirements of function are higher,while the mechanical properties must be further improved in repairing hard tissue.We further summarize the characteristics of collagen-based bioink and point out the most important properties that should be considered in different repair scenarios,which can provide reference for the preparation of bioinks with different functions.Finally,we point out the main challenges faced by collagen-based bioink and prospect the future research directions. 展开更多
关键词 COLLAGEN 3D printing Bioink Soft tissue Hard tissue
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部