期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Morphological residual convolutional neural network(M-RCNN)for intelligent recognition of wear particles from artificial joints 被引量:6
1
作者 Xiaobin HU Jian SONG +4 位作者 Zhenhua LIAO Yuhong LIU Jian GAO Bjoern MENZE Weiqiang LIU 《Friction》 SCIE EI CAS CSCD 2022年第4期560-572,共13页
Finding the correct category of wear particles is important to understand the tribological behavior.However,manual identification is tedious and time-consuming.We here propose an automatic morphological residual convo... Finding the correct category of wear particles is important to understand the tribological behavior.However,manual identification is tedious and time-consuming.We here propose an automatic morphological residual convolutional neural network(M-RCNN),exploiting the residual knowledge and morphological priors between various particle types.We also employ data augmentation to prevent performance deterioration caused by the extremely imbalanced problem of class distribution.Experimental results indicate that our morphological priors are distinguishable and beneficial to largely boosting overall performance.M-RCNN demonstrates a much higher accuracy(0.940)than the deep residual network(0.845)and support vector machine(0.821).This work provides an effective solution for automatically identifying wear particles and can be a powerful tool to further analyze the failure mechanisms of artificial joints. 展开更多
关键词 wear particles classifier morphological priors data augmentation deep residual network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部