Dear Editor, Based on their ability to proliferate and the capacity to differentiate into specific cell types, hepatic progenitor/stem cells (HPCs) from adult human liver may have potential therapeutic effects on en...Dear Editor, Based on their ability to proliferate and the capacity to differentiate into specific cell types, hepatic progenitor/stem cells (HPCs) from adult human liver may have potential therapeutic effects on end-stage liver failure. In addition, adult HPCs have a reduced risk of teratoma for- mation and are not subject to the same ethical issues as fetal HPCs or embryonic stem cells . The HPCs from rhesus monkeys are relevant because they may serve as a valuable preclinical model for assessment of cell therapy in humans. To date, there are no reports of HPCs or liver epithelial progenitor cells (LEPCs) isolated from normal adult rhesus monkey although a few studies in other species were reported. We report here for the first time the successful isolation of rhesus monkey LEPCs (mLEPCs) from normal adult livers (n = 12).展开更多
Colorectal cancer (CRC) accounts for approximately 10% of newly diagnosed cancer cases and cancer-related deaths worldwide~1. The identification of molecular subtypes of CRCs has significantly advanced treatment strat...Colorectal cancer (CRC) accounts for approximately 10% of newly diagnosed cancer cases and cancer-related deaths worldwide~1. The identification of molecular subtypes of CRCs has significantly advanced treatment strategies,including targeted therapy and immunotherapy.展开更多
Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesi...Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesins. Here, we report silkworm posterior silkgland (PSG), specialized cells with an extensive endomembrane system for intracellular transport and efficient secretion of fibroin, as a novel model for kinesin study. To investigate kinesindriven intracellular transport in PSG cells, we cloned five silkworm kinesin-like proteins (KLPs), BmKinesin-1, BmKinesin-6, BmKinesin-7, BmKinesin-13, and BmKinesin-14A. We determined their expression patterns by relative real-time PCR and western blotting. Immunofluorescence microscopy verified their colocalization with microtubules. By combining pull-down assays, LC-MS/MS, and western blotting analysis, we identified many potential cargoes of BmKinesin-1 in PSG, including fibroin-containing granules and exuperantia-associated ribonucleoprotein (RNP) complexes. Moreover, BmKinesin-13 overexpression disrupted the microtubule network in BmN cells, which is consistent with a role of Kinesin-13 in regulating microtubule dynamics in other organisms. On the basis of these results, we concluded that PSG might have advantages in elucidating mechanisms of intracellular transport in secretory tissues and could serve as a potential model for kinesin studies.展开更多
Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iP...Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and fiver-related functions of the iPS cellderived hepatic ceils were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells.展开更多
Pericentrin, a conserved centrosomal component, provides the structural scaffold to anchor numerous centrosomal proteins, and thus plays an essential role in the organization and function of the centrosome and the mit...Pericentrin, a conserved centrosomal component, provides the structural scaffold to anchor numerous centrosomal proteins, and thus plays an essential role in the organization and function of the centrosome and the mitotic spindle. Although pericentrin was shown to localize in the cytoplasm and reported to be sensitive to leptomycin B (LMB), a specific inhibitor of Crml, the regions within pericentrin that serve as signals for transporting in and out of the nucleus have not yet been identified. In this study, we identified five novel nuclear export signals (NESs) in pericentrin with diverse export activities. All of the five NESs could bind to Crml in a LMB-sensitive way when mediating the nuclear export of pericentrin. We also demonstrated that the region of amino acids 8-42 in pericentrin contains a tripartite nuclear localization signal (NLS) consisting of three clusters of basic amino acids. The NLS of pericentrin binds to importin β directly or via the adaptor importin α to form the import complex, which could be disrupted by RanQ69L, a dominant-negative Ran GTPase possessing high affinity for importin β. Furthermore, we found that mutation of the NESs in full-length pericentrin results in both nuclear and cytoplasmic localization, and mutation of the NLS abolishes the nuclear import of pericentrin. On the basis of these results, we suggest that the NESs and NLS of pericentrin are essential for its subcellular localization and nucleocytoplasmic trafficking during the cell cycle.展开更多
The authors regret that the grant number“21CJ1402200”in the Acknowledgments session should be replaced as“21JC1402200”.The corrected contents areprovided as follows.
Bone marrow mesenchymal stromal/stem cells (MSCs) are a heterogeneous population that can self-renew and generate stroma,cartilage, fat, and bone. Although a significant progress has been made toward recognizing about...Bone marrow mesenchymal stromal/stem cells (MSCs) are a heterogeneous population that can self-renew and generate stroma,cartilage, fat, and bone. Although a significant progress has been made toward recognizing about the phenotypic characteristics ofMSCs, the true identity and properties of MSCs in bone marrow remain unclear. Here, we report the expression landscape of humanfetal BM nucleated cells (BMNCs) based on the single-cell transcriptomic analysis. Unexpectedly, while the common cell surfacemarkers such as CD146, CD271, and PDGFRa used for isolating MSCs were not detected, LIFR+PDGFRB+ were identified to bespecific markers of MSCs as the early progenitors. In vivo transplantation demonstrated that LIFR+PDGFRB+CD45-CD31-CD235a-MSCs could form bone tissues and reconstitute the hematopoietic microenvironment (HME) effectively in vivo. Interestingly, wealso identified a subpopulation of bone unipotent progenitor expressing TM4SF1+CD44+CD73+CD45-CD31-CD235a-, which hadosteogenic potentials, but could not reconstitute HME. MSCs expressed a set of different transcription factors at the different stagesof human fetal bone marrow, indicating that the stemness properties of MSCs might change during development. Moreover,transcriptional characteristics of cultured MSCs were significantly changed compared with freshly isolated primary MSCs. Ourcellular profiling provides a general landscape of heterogeneity, development, hierarchy, microenvironment of the human fetal BMderivedstem cells at single-cell resolution.展开更多
Although somatic cells can be reprogrammed to pluripotent stem cells(PsCs)with pure chemicals,authentic pluripotency of chemically induced pluripotent stem celis(CipsCs)has never been achieved through tetraploid compl...Although somatic cells can be reprogrammed to pluripotent stem cells(PsCs)with pure chemicals,authentic pluripotency of chemically induced pluripotent stem celis(CipsCs)has never been achieved through tetraploid complementation assay.Spontaneous reprogramming of spermatogonial stem cells(ssCs)was another non-transgenic way to obtain PsCs,but this process lacks mechanistic explanation.Here,we reconstructed the trajectory of mouse SsC reprogramming and developed a five-chemical combination,boosting the reprogramming effciency by nearly 80-to 100-folds.More importantly,chemical induced germline-derived PsCs(5C-gPSCs),but not gpsCs and chemical induced pluripotent stem cells,had authentic pluripotency,as determined by tetraploid complementation.Mechanistically,ssCs traversed through an inverted pathway of in vivo germ ceil development,exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts.Besides,ssC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5c-gPsCs,which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles.Our work sheds ight on the unique regulatory network underpinning SsC reprogramming,providing insights to understand generic mechanisms for cell-fate decision and epigenetic-relateddisorders in regenerative medicine.展开更多
PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten ...PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hypoglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of streptozotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the elevation of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3β was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.展开更多
Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphor...Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin B1 regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin B1 is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin B1 is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin B1 by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin B1 accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of mi- crotubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin B1 is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.展开更多
Growth factor independence 1 (GFI1) is important for maturation of mammalian lymphocytes and neutrophils and maintenance of adult hematopoietic stem cells (HSCs). The role of GFI1 in embryonic hematopoiesis is les...Growth factor independence 1 (GFI1) is important for maturation of mammalian lymphocytes and neutrophils and maintenance of adult hematopoietic stem cells (HSCs). The role of GFI1 in embryonic hematopoiesis is less well characterized. Through an enhancer trap screen and bioinformatics analysis, we identified a zebrafish homolog of Gill (named grill) and analyzed its function during embryonic development. Expression of both an endogenous griLl gene and a GFP reporter gene inserted near its genomic locus was detected in hematopoietic cells of zebrafish embryos. Morpholino (MO) knockdown of gill.1 reduced expression of scl, Imo2, c-myb, mpo, ragl, gatal and hemoglobin alpha embryonic-1 (hbael), as well as the total amount of embryonic hemoglobin, but increased expression ofpu.1 and l-plastin. Under the same conditions, MO injection did not affect the markers involved in vascular and pronephric development. Conversely, overexpression of gill.1 via mRNA injection enhanced expression ofgatal but inhibited expression ofpu.1. These findings suggest that Gill.1 plays a critical role in regulating the balance of embryonic erythroid and myeloid lineage determination, and is also required for the differentiation of lymphocytes and granulocytes during zebrafish embryogenesis.展开更多
Colorectal cancer(CRC)is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing issue that needs to be addressed.Here,we established human CRC tumor-derived organoids that well represent b...Colorectal cancer(CRC)is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing issue that needs to be addressed.Here,we established human CRC tumor-derived organoids that well represent both morphological and molecular heterogeneities of original tumors.To efficiently identify repurposed drugs for CRC,we developed a robust organoid-based drug screening system.By combining the repurposed drug library and computation-based drug prediction,335 drugs were tested and 34 drugs with anti-CRC effects were identified.More importantly,we conducted a detailed transcriptome analysis of drug responses and divided the drug response signatures into five representative patterns:differentiation induction,growth inhibition,metabolism inhibition,immune response promotion,and cell cycle inhibition.The anticancer activities of drug candidates were further validated in the established patient-derived organoids-based xenograft(PDOX)system in vivo.We found that fedratinib,trametinib,and bortezomib exhibited effective anticancer effects.Furthermore,the concordance and discordance of drug response signatures between organoids in vitro and pairwise PDOX in vivo were evaluated.Our study offers an innovative approach for drug discovery,and the representative transcriptome features of drug responses provide valuable resources for developing novel clinical treatments for CRC.展开更多
The effects of haploidentical rhG-CSF-mobilized blood and marrow transplantation(HBMT) on hematological malignances are well established. Previous prospective single-center studies have demonstrated better survival af...The effects of haploidentical rhG-CSF-mobilized blood and marrow transplantation(HBMT) on hematological malignances are well established. Previous prospective single-center studies have demonstrated better survival after HBMT versus haploidentical rhG-CSF-mobilized peripheral blood stem cell transplantation(HPBSCT) for acute leukemia(AL) not in remission(NR) or in more than the second complete remission(>CR2). To test the hypothesis that HBMT is still superior to HPBSCT for patients with AL, multiple myeloma(MM), or non-Hodgkin lymphoma(NHL) in CR1/CR2 and for patients with chronic myeloid leukemia in the first and second chronic phase lacking a matched donor, we designed a propensity score method-based multicenter study.Hematopoietic recovery, acute graft-versus-host disease(aGVHD), and chronic GVHD were comparable between the HBMT group(n=168) and the HPBSCT group(n=42). No significant differences were found in non-relapse mortality rate(20.17%±3.58%and 27.24%±7.16%, P=0.18) or relapse rate(19.96%±3.72% and 28.49%±8.25%, P=0.32) between the HBMT group and the HPBSCT group. HBMT recipients had better overall survival(65.0%±4.2% and 54.2%±8.3%, P=0.037) and disease-free survival(59.9%±4.6% and 44.3%±8.7%, P=0.051). Multivariate analysis showed that HPBSCT was associated with poorer DFS(HR(95%CI), 1.639(0.995–2.699), P=0.052). Our comparisons showed that HBMT was superior to HPBSCT as a post-remission treatment for patients lacking an identical donor.展开更多
Molecular knowledge of human gastric corpus epithelium remains incomplete.Here,by integrated analyses using single-cell RNA sequencing(scRNA-seq),spatial transcriptomics,and single-cell assay for transposase accessibl...Molecular knowledge of human gastric corpus epithelium remains incomplete.Here,by integrated analyses using single-cell RNA sequencing(scRNA-seq),spatial transcriptomics,and single-cell assay for transposase accessible chromatin sequencing(scATAC-seq)techniques,we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium.Specifically,we identified a stem/progenitor cell population in the isthmus of human gastric corpus,where EGF and WNT signaling pathways were activated.Meanwhile,LGR4,but not LGR5,was responsible for the activation of WNT signaling pathway.Importantly,FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells.Finally,we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level,and identified several important cell-type-specific transcription factors.In summary,our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.展开更多
Approximately 140 million people worldwide are homozygous carriers of APOE4(ε4),a strong genetic risk factor for late onset familial and sporadic Alzheimer’s disease(AD),91%of whom will develop AD at earlier age tha...Approximately 140 million people worldwide are homozygous carriers of APOE4(ε4),a strong genetic risk factor for late onset familial and sporadic Alzheimer’s disease(AD),91%of whom will develop AD at earlier age than heterozygous carriers and noncarriers.Susceptibility to AD could be reduced by targeted editing of APOE4,but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies.Here,we first screened eight cytosine base editor variants at four injection stages(from 1-to 8-cell stage),and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate(up to 100%)with the lowest bystander effects.In particular,80%of AD-susceptibleε4 allele copies were converted to the AD-neutralε3 allele in humanε4-carrying embryos.Stringent control measures combined with targeted deep sequencing,whole genome sequencing,and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells.Furthermore,base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage.Finally,we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia.Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos,a potential approach for reducing human susceptibility to AD or other genetic diseases.展开更多
Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differen...Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.展开更多
Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis.Defects in the integrity and function of centromeres can result in c...Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis.Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability.Bub1 is essential for the mitotic centromere dynamics,yet the underlying molecular mechanisms remain largely unclear.Here,we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis.This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120(H2Ap T120),which recruits Aurora B and Shugoshin 1(Sgo1)to regulate centromere integrity,protect centromeric cohesion,and ensure the subsequent faithful chromosome segregation.Expression of the nonacetylated Bub1 mutant reduces its kinase activity,decreases the level of H2Ap T120,and disrupts the recruitment of centromere proteins and chromosome congression,leading to genomic instability of daughter cells.When cells exit mitosis,HDAC1-regulated deacetylation of Bub1 decreases H2Ap T120 levels and thereby promotes the departure of centromeric CPC and Sgo1,ensuring timely centromeres disassembly.Collectively,our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres,ensuring faithful chromosome segregation during mitosis.展开更多
Irreversible eye lesions, such as glaucoma and traumatic optic neuropathy, can cause blindness;however, no effective treatments exist. The optic nerve, in particular, lacks the capacity to spontaneously regenerate, re...Irreversible eye lesions, such as glaucoma and traumatic optic neuropathy, can cause blindness;however, no effective treatments exist. The optic nerve, in particular, lacks the capacity to spontaneously regenerate, requiring the development of an effective approach for optic nerve repair, which has proven challenging. Here, we demonstrate that a combination of the small molecules 3BDO and trichostatin A(TSA)—which regulate mTOR and HDAC, respectively—packaged in thermosensitive hydrogel for 4-week-sustained release after intravitreal injection, effectively induced optic nerve regeneration in a mouse model of optic nerve crush injury. Moreover, this combination of 3BDO and TSA also protected axon projections and improved visual responses in an old mouse model(11 months old) of glaucoma. Taken together, our data provide a new, local small molecule-based treatment for the effective induction of optic nerve repair, which may represent a foundation for the development of pharmacological methods to treat irreversible eye diseases.展开更多
Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulati...Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected Fo fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.展开更多
Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organizati...Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organization is poorly understood, in this study, we characterized the bundling activity of AtFH8 in vitro and in vivo. Biochemical analysis showed that AtFH8(FH1FH2) could form dimers and bundle preformed actin filaments or induce stellar structures during actin polymerization. Expression of truncated forms of AtFH8 and immunolocalization analysis showed that AtFH8 localized primarily to nuclear envelope in interphase and to the new cell wall after cytokinesis, depending primarily on its N-terminal transmembrane domain. GUS histochemical staining showed AtFH8 was predominantly expressed in Arabidopsis root meristem, vasculature, and outgrowth points of lateral roots. The primary root growth and lateral root initiation of atfh8 could be decreased by latrunculin B (LatB). Analysis of the number of dividing cells in Arabidopsis root tips showed that much fewer dividing cells in Lat B-treated atfh8 plants than wild-type plants, which indicates that AtFH8 was involved in cell division. Actin cytoskeleton in root meristem of atfh8-1 was more sensitive to LatB treatment than that of wild-type. Altogether, our results indicate that AtFH8 is an actin filament nucleator and bundler that functions in cell division and root development.展开更多
文摘Dear Editor, Based on their ability to proliferate and the capacity to differentiate into specific cell types, hepatic progenitor/stem cells (HPCs) from adult human liver may have potential therapeutic effects on end-stage liver failure. In addition, adult HPCs have a reduced risk of teratoma for- mation and are not subject to the same ethical issues as fetal HPCs or embryonic stem cells . The HPCs from rhesus monkeys are relevant because they may serve as a valuable preclinical model for assessment of cell therapy in humans. To date, there are no reports of HPCs or liver epithelial progenitor cells (LEPCs) isolated from normal adult rhesus monkey although a few studies in other species were reported. We report here for the first time the successful isolation of rhesus monkey LEPCs (mLEPCs) from normal adult livers (n = 12).
基金supported by grants from the National Natural Science Foundation of China (Grant No.81972702)the Beijing Nova Program (Grant No. 2022029)。
文摘Colorectal cancer (CRC) accounts for approximately 10% of newly diagnosed cancer cases and cancer-related deaths worldwide~1. The identification of molecular subtypes of CRCs has significantly advanced treatment strategies,including targeted therapy and immunotherapy.
基金Acknowledgments We wish to thank Prof GZ Zhang and Prof ZF Zhang at the Sericultural Research Institute of the Chinese Academy of Agricultural Sciences for B. mori strain and silkworm artificial diet, respectively. This work was supported by the National Natural Science Foundation of China (30670659, 30771086, 30721064), the Major State Basic Research Development Program of China (973 Program) (2006CB500700, 2006CB910700, 2010CB833705), and the National High Technology Research and Development Program of China (863 Program) (2006AA10A119).
文摘Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesins. Here, we report silkworm posterior silkgland (PSG), specialized cells with an extensive endomembrane system for intracellular transport and efficient secretion of fibroin, as a novel model for kinesin study. To investigate kinesindriven intracellular transport in PSG cells, we cloned five silkworm kinesin-like proteins (KLPs), BmKinesin-1, BmKinesin-6, BmKinesin-7, BmKinesin-13, and BmKinesin-14A. We determined their expression patterns by relative real-time PCR and western blotting. Immunofluorescence microscopy verified their colocalization with microtubules. By combining pull-down assays, LC-MS/MS, and western blotting analysis, we identified many potential cargoes of BmKinesin-1 in PSG, including fibroin-containing granules and exuperantia-associated ribonucleoprotein (RNP) complexes. Moreover, BmKinesin-13 overexpression disrupted the microtubule network in BmN cells, which is consistent with a role of Kinesin-13 in regulating microtubule dynamics in other organisms. On the basis of these results, we concluded that PSG might have advantages in elucidating mechanisms of intracellular transport in secretory tissues and could serve as a potential model for kinesin studies.
基金We thank Dr Zicai Liang and Huang Huang (Institute of Molecular Medicine, Peking University) for their kind help with BioTek Multi-Detection Microplate Reader and Yizhe Zhang for technical support on real-time PCR. We also thank Chengyan Wang, Pengbo Zhang, Pingping Hou, Haisong Liu, Chun Liu and other colleagues in our laboratory for technical assistance and advice in carrying out these experiments. This study was supported by a Bill & Melinda Gates Foundation Grant (37871), a Ministry of Education grant (705001), the National Basic Research Program of China (973 program, 2009CB522502, 2009CB941200 and 2007CB947901), National Natural Science Foundation of China for Creative Research Groups (30421004), the Chinese Science and Technology Key Project (2008zx10002-014, 2008zx10002- 011 and 2009ZX 10004-403) and a 111 Project to Deng H.
文摘Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and fiver-related functions of the iPS cellderived hepatic ceils were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells.
文摘Pericentrin, a conserved centrosomal component, provides the structural scaffold to anchor numerous centrosomal proteins, and thus plays an essential role in the organization and function of the centrosome and the mitotic spindle. Although pericentrin was shown to localize in the cytoplasm and reported to be sensitive to leptomycin B (LMB), a specific inhibitor of Crml, the regions within pericentrin that serve as signals for transporting in and out of the nucleus have not yet been identified. In this study, we identified five novel nuclear export signals (NESs) in pericentrin with diverse export activities. All of the five NESs could bind to Crml in a LMB-sensitive way when mediating the nuclear export of pericentrin. We also demonstrated that the region of amino acids 8-42 in pericentrin contains a tripartite nuclear localization signal (NLS) consisting of three clusters of basic amino acids. The NLS of pericentrin binds to importin β directly or via the adaptor importin α to form the import complex, which could be disrupted by RanQ69L, a dominant-negative Ran GTPase possessing high affinity for importin β. Furthermore, we found that mutation of the NESs in full-length pericentrin results in both nuclear and cytoplasmic localization, and mutation of the NLS abolishes the nuclear import of pericentrin. On the basis of these results, we suggest that the NESs and NLS of pericentrin are essential for its subcellular localization and nucleocytoplasmic trafficking during the cell cycle.
基金National Key R&D Program of China(2019YFA0110802 and 2019YFA0802800)the National Natural Science Foundation of China(32025023,31971366)+1 种基金the Shanghai Municipal Commission for Science and Technology(21JC1402200,20140900200)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-05-E00054)。
文摘The authors regret that the grant number“21CJ1402200”in the Acknowledgments session should be replaced as“21JC1402200”.The corrected contents areprovided as follows.
基金the National Natural Science Foundation of China(81930026 and 81970911)the National Key R&D Program of China(2017YFA0102702 and 2018YFA0107601)the Beijing Municipal Science&Technology Commission(Z181100001318001).
文摘Bone marrow mesenchymal stromal/stem cells (MSCs) are a heterogeneous population that can self-renew and generate stroma,cartilage, fat, and bone. Although a significant progress has been made toward recognizing about the phenotypic characteristics ofMSCs, the true identity and properties of MSCs in bone marrow remain unclear. Here, we report the expression landscape of humanfetal BM nucleated cells (BMNCs) based on the single-cell transcriptomic analysis. Unexpectedly, while the common cell surfacemarkers such as CD146, CD271, and PDGFRa used for isolating MSCs were not detected, LIFR+PDGFRB+ were identified to bespecific markers of MSCs as the early progenitors. In vivo transplantation demonstrated that LIFR+PDGFRB+CD45-CD31-CD235a-MSCs could form bone tissues and reconstitute the hematopoietic microenvironment (HME) effectively in vivo. Interestingly, wealso identified a subpopulation of bone unipotent progenitor expressing TM4SF1+CD44+CD73+CD45-CD31-CD235a-, which hadosteogenic potentials, but could not reconstitute HME. MSCs expressed a set of different transcription factors at the different stagesof human fetal bone marrow, indicating that the stemness properties of MSCs might change during development. Moreover,transcriptional characteristics of cultured MSCs were significantly changed compared with freshly isolated primary MSCs. Ourcellular profiling provides a general landscape of heterogeneity, development, hierarchy, microenvironment of the human fetal BMderivedstem cells at single-cell resolution.
基金supported by grants from the National Key R&D Program of China(2020YFA0113300 to M.W.,2018YFA0107601 to F.T.,2019YFA0801802 to M.W.,2022YFA0806300 to X.-Y.Z.)the National Natural Science Foundation of China(82071711 to X.-Y.Z.,32170866 to M.W.,U22A20278 to X.-Y.Z.)+2 种基金Key Research&Development Program of Bioland Laboratory(Guangzhou Regenerative Medicine and Health Guangdong Laboratory)(2018GZR110104002 to X.-Y.Z.)Guangdong Basic and Applied Basic Research Foundation(2021A1515010802 to M.W.)National Demonstration Center for Experimental Education of Basic Medical Sciences(Southerm Medical University).
文摘Although somatic cells can be reprogrammed to pluripotent stem cells(PsCs)with pure chemicals,authentic pluripotency of chemically induced pluripotent stem celis(CipsCs)has never been achieved through tetraploid complementation assay.Spontaneous reprogramming of spermatogonial stem cells(ssCs)was another non-transgenic way to obtain PsCs,but this process lacks mechanistic explanation.Here,we reconstructed the trajectory of mouse SsC reprogramming and developed a five-chemical combination,boosting the reprogramming effciency by nearly 80-to 100-folds.More importantly,chemical induced germline-derived PsCs(5C-gPSCs),but not gpsCs and chemical induced pluripotent stem cells,had authentic pluripotency,as determined by tetraploid complementation.Mechanistically,ssCs traversed through an inverted pathway of in vivo germ ceil development,exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts.Besides,ssC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5c-gPsCs,which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles.Our work sheds ight on the unique regulatory network underpinning SsC reprogramming,providing insights to understand generic mechanisms for cell-fate decision and epigenetic-relateddisorders in regenerative medicine.
基金This research was supported by grants from the Ministry of Ed- ucation (705001), National Basic Research Program of China (973 Program 2009CB941200), National Natural Science Foundation of China (30830061 and 30421004), and a 111 project to H Deng. We thank Dr Tak Wah Mak (University of Alberta, Canada) for kindly providing the Ptern mice, Dr Guoqiang Gu (Vanderbilt University, USA) for kindly providing the plasmid of Pdxl-Cre, and Dr C Wright (Vanderbilt University, USA) for the PDX1 antibody. We thank the Model Animal Research Center of Nanjing University for B6 129-Gt(ROSA)26Sor tm/Sho/J mice and the Research Center for Proteome Analysis for proteomics analysis. We thank Dr Matt Stremlau, Dr Hui Zhang, Jun Cai, Han Qin, Jian Li, Yan Shi, Haisheng Zhou, and Fei Ye for their critical reading of the manu- script. We also thank Wei Jiang, Yushan Guo, Jie Yang, Chengyan Wang, Hui Zhang, and other colleagues in our laboratory for providing technical assistance and advice during the experiments.
文摘PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hypoglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of streptozotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the elevation of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3β was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.
文摘Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin B1 regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin B1 is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin B1 is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin B1 by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin B1 accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of mi- crotubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin B1 is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.
文摘Growth factor independence 1 (GFI1) is important for maturation of mammalian lymphocytes and neutrophils and maintenance of adult hematopoietic stem cells (HSCs). The role of GFI1 in embryonic hematopoiesis is less well characterized. Through an enhancer trap screen and bioinformatics analysis, we identified a zebrafish homolog of Gill (named grill) and analyzed its function during embryonic development. Expression of both an endogenous griLl gene and a GFP reporter gene inserted near its genomic locus was detected in hematopoietic cells of zebrafish embryos. Morpholino (MO) knockdown of gill.1 reduced expression of scl, Imo2, c-myb, mpo, ragl, gatal and hemoglobin alpha embryonic-1 (hbael), as well as the total amount of embryonic hemoglobin, but increased expression ofpu.1 and l-plastin. Under the same conditions, MO injection did not affect the markers involved in vascular and pronephric development. Conversely, overexpression of gill.1 via mRNA injection enhanced expression ofgatal but inhibited expression ofpu.1. These findings suggest that Gill.1 plays a critical role in regulating the balance of embryonic erythroid and myeloid lineage determination, and is also required for the differentiation of lymphocytes and granulocytes during zebrafish embryogenesis.
基金funded by the Beijing Advanced Innovation Center for Genomics and the National Natural Science Foundation of China(Grant No.91959110).
文摘Colorectal cancer(CRC)is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing issue that needs to be addressed.Here,we established human CRC tumor-derived organoids that well represent both morphological and molecular heterogeneities of original tumors.To efficiently identify repurposed drugs for CRC,we developed a robust organoid-based drug screening system.By combining the repurposed drug library and computation-based drug prediction,335 drugs were tested and 34 drugs with anti-CRC effects were identified.More importantly,we conducted a detailed transcriptome analysis of drug responses and divided the drug response signatures into five representative patterns:differentiation induction,growth inhibition,metabolism inhibition,immune response promotion,and cell cycle inhibition.The anticancer activities of drug candidates were further validated in the established patient-derived organoids-based xenograft(PDOX)system in vivo.We found that fedratinib,trametinib,and bortezomib exhibited effective anticancer effects.Furthermore,the concordance and discordance of drug response signatures between organoids in vitro and pairwise PDOX in vivo were evaluated.Our study offers an innovative approach for drug discovery,and the representative transcriptome features of drug responses provide valuable resources for developing novel clinical treatments for CRC.
基金supported by the National Natural Science Foundation of China(81530046,81270644,81230013)the Major State Basic Research Development Program of China(2013CB733700)+2 种基金the Collaborative Innovation Center of Hematology,Peking University,China,Beijing Talents fund(2015000021223ZK26)the Milstein Medical Asian American Partnership(MMAAP)Foundation Research Project Award in Hematologyproject TG-2015-003 supported by the Health Science Promotion Project of Beijing
文摘The effects of haploidentical rhG-CSF-mobilized blood and marrow transplantation(HBMT) on hematological malignances are well established. Previous prospective single-center studies have demonstrated better survival after HBMT versus haploidentical rhG-CSF-mobilized peripheral blood stem cell transplantation(HPBSCT) for acute leukemia(AL) not in remission(NR) or in more than the second complete remission(>CR2). To test the hypothesis that HBMT is still superior to HPBSCT for patients with AL, multiple myeloma(MM), or non-Hodgkin lymphoma(NHL) in CR1/CR2 and for patients with chronic myeloid leukemia in the first and second chronic phase lacking a matched donor, we designed a propensity score method-based multicenter study.Hematopoietic recovery, acute graft-versus-host disease(aGVHD), and chronic GVHD were comparable between the HBMT group(n=168) and the HPBSCT group(n=42). No significant differences were found in non-relapse mortality rate(20.17%±3.58%and 27.24%±7.16%, P=0.18) or relapse rate(19.96%±3.72% and 28.49%±8.25%, P=0.32) between the HBMT group and the HPBSCT group. HBMT recipients had better overall survival(65.0%±4.2% and 54.2%±8.3%, P=0.037) and disease-free survival(59.9%±4.6% and 44.3%±8.7%, P=0.051). Multivariate analysis showed that HPBSCT was associated with poorer DFS(HR(95%CI), 1.639(0.995–2.699), P=0.052). Our comparisons showed that HBMT was superior to HPBSCT as a post-remission treatment for patients lacking an identical donor.
基金supported by grants from Beijing Advanced Innovation Center for Genomics(ICG),supported by grants from the National Natural Science Foundation of China(No.81672361)supported by grants from the National Natural Science Foundation of China(No.32100672).
文摘Molecular knowledge of human gastric corpus epithelium remains incomplete.Here,by integrated analyses using single-cell RNA sequencing(scRNA-seq),spatial transcriptomics,and single-cell assay for transposase accessible chromatin sequencing(scATAC-seq)techniques,we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium.Specifically,we identified a stem/progenitor cell population in the isthmus of human gastric corpus,where EGF and WNT signaling pathways were activated.Meanwhile,LGR4,but not LGR5,was responsible for the activation of WNT signaling pathway.Importantly,FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells.Finally,we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level,and identified several important cell-type-specific transcription factors.In summary,our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.
基金supported by Chinese National Science and Technology major project R&D Program of China(2018YFC2000101)Strategic Priority Research Program of Chinese Academy of Science(XDB32060000)+7 种基金National Natural Science Foundation of China(Grant Nos.31871502,31901047,31925016,91957122,82021001,and 31922048)Basic Frontier Scientific Research Program of Chinese Academy of Sciences From 0 to 1 original innovation project(ZDBS-LYSM001)Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)Shanghai City Committee of Science and Technology Project(18411953700,18JC1410100,19XD1424400 and 19YF1455100)Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20212200 and SHSMU-ZLCX20210200)International Partnership Program of Chinese Academy of Sciences(153D31KYSB20170059)Postdoctoral Science Foundation of China(2020M681417 and 2021T140684)Sailing Program of Shanghai(21YF1453000)(to J.H.).
文摘Approximately 140 million people worldwide are homozygous carriers of APOE4(ε4),a strong genetic risk factor for late onset familial and sporadic Alzheimer’s disease(AD),91%of whom will develop AD at earlier age than heterozygous carriers and noncarriers.Susceptibility to AD could be reduced by targeted editing of APOE4,but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies.Here,we first screened eight cytosine base editor variants at four injection stages(from 1-to 8-cell stage),and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate(up to 100%)with the lowest bystander effects.In particular,80%of AD-susceptibleε4 allele copies were converted to the AD-neutralε3 allele in humanε4-carrying embryos.Stringent control measures combined with targeted deep sequencing,whole genome sequencing,and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells.Furthermore,base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage.Finally,we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia.Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos,a potential approach for reducing human susceptibility to AD or other genetic diseases.
基金the National Key Basic Research Program of China (2015CB942800)the National Key Research and Development Program of China, Stem Cell and Translational Research (2016YFA0100500)the National Natural Science Foundation of China (NSFC)(3187145 31671500, 31730060, and 81371264).
文摘Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.
基金supported by grants from the National Natural Science Foundation of China(32130026,92254305 and 32070714)。
文摘Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis.Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability.Bub1 is essential for the mitotic centromere dynamics,yet the underlying molecular mechanisms remain largely unclear.Here,we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis.This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120(H2Ap T120),which recruits Aurora B and Shugoshin 1(Sgo1)to regulate centromere integrity,protect centromeric cohesion,and ensure the subsequent faithful chromosome segregation.Expression of the nonacetylated Bub1 mutant reduces its kinase activity,decreases the level of H2Ap T120,and disrupts the recruitment of centromere proteins and chromosome congression,leading to genomic instability of daughter cells.When cells exit mitosis,HDAC1-regulated deacetylation of Bub1 decreases H2Ap T120 levels and thereby promotes the departure of centromeric CPC and Sgo1,ensuring timely centromeres disassembly.Collectively,our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres,ensuring faithful chromosome segregation during mitosis.
基金supported by the National Natural Science Foundation of China(32288102)。
文摘Irreversible eye lesions, such as glaucoma and traumatic optic neuropathy, can cause blindness;however, no effective treatments exist. The optic nerve, in particular, lacks the capacity to spontaneously regenerate, requiring the development of an effective approach for optic nerve repair, which has proven challenging. Here, we demonstrate that a combination of the small molecules 3BDO and trichostatin A(TSA)—which regulate mTOR and HDAC, respectively—packaged in thermosensitive hydrogel for 4-week-sustained release after intravitreal injection, effectively induced optic nerve regeneration in a mouse model of optic nerve crush injury. Moreover, this combination of 3BDO and TSA also protected axon projections and improved visual responses in an old mouse model(11 months old) of glaucoma. Taken together, our data provide a new, local small molecule-based treatment for the effective induction of optic nerve repair, which may represent a foundation for the development of pharmacological methods to treat irreversible eye diseases.
基金supported by the grants from the 973 Program(Nos.2009CB918702 and 2012CB945101)the NSFC(Nos.31071087 and 31100889)+1 种基金W.-M.D.is supported by NIH grant R01GM072562National Science Foundation of USA(IOS-1052333)
文摘Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected Fo fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
文摘Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organization is poorly understood, in this study, we characterized the bundling activity of AtFH8 in vitro and in vivo. Biochemical analysis showed that AtFH8(FH1FH2) could form dimers and bundle preformed actin filaments or induce stellar structures during actin polymerization. Expression of truncated forms of AtFH8 and immunolocalization analysis showed that AtFH8 localized primarily to nuclear envelope in interphase and to the new cell wall after cytokinesis, depending primarily on its N-terminal transmembrane domain. GUS histochemical staining showed AtFH8 was predominantly expressed in Arabidopsis root meristem, vasculature, and outgrowth points of lateral roots. The primary root growth and lateral root initiation of atfh8 could be decreased by latrunculin B (LatB). Analysis of the number of dividing cells in Arabidopsis root tips showed that much fewer dividing cells in Lat B-treated atfh8 plants than wild-type plants, which indicates that AtFH8 was involved in cell division. Actin cytoskeleton in root meristem of atfh8-1 was more sensitive to LatB treatment than that of wild-type. Altogether, our results indicate that AtFH8 is an actin filament nucleator and bundler that functions in cell division and root development.