期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Self-assembly synthesis of S-scheme g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) for photocatalytic degradation of norfloxacin and bisphenol A 被引量:2
1
作者 Xiaomeng Gu Taijie Chen +7 位作者 Jian Lei Yang Yang Xiuzhen Zheng Sujuan Zhang Qiushi Zhu Xianliang Fu Sugang Meng Shifu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第10期2569-2580,共12页
To realize the high-efficiency photodegradation of antibiotics,a novel S-scheme heterojunction photocatalyst g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) was proposed and successfully prepared in this work.The 10%g-C_(3)N_(4)/B... To realize the high-efficiency photodegradation of antibiotics,a novel S-scheme heterojunction photocatalyst g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) was proposed and successfully prepared in this work.The 10%g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) heterojunction exhibits the highest degradation rate of norfloxacin(NOR)and bisphenol A(BPA).The degradation rate of NOR on 10%g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) is about 1.38 and 2.33 times higher than that of pure Bi_(8)(CrO_(4))O_(11) and g-C_(3)N_(4),respectively.Further,the degradation rate of BPA over 10%g-C_(3)N_(4)/Bi_(8)(CrO_(4))O_(11) heterojunction is bout 1.35 and 9.11 times higher than that of pure Bi_(8)(CrO_(4))O_(11) and g-C_(3)N_(4),respectively.The formation of S-scheme heterojunction facilitates the separation of photogenerated electron-hole pairs and reduces the recombination of charge carriers,which was confirmed by photocurrent,electrochemical impedance spectroscopy,steady-state and time-resolved transient photoluminescence spectrum,etc.The in-situ X-ray photoelectron spectroscopy,radical trapping experiments and electron paramagnetic resonance results demonstrate that the charge transfer is in accord with S-scheme mechanism. 展开更多
关键词 Bi_(8)(CrO_(4))O_(11) g-C_(3)N_(4) S-Scheme Photocatalytic degradation Antibiotics
下载PDF
MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid 被引量:9
2
作者 Sujuan Zhang Shixiang Duan +5 位作者 Gaoli Chen Sugang Meng Xiuzhen Zheng You Fan Xianliang Fu Shifu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期193-204,共12页
Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalys... Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results. 展开更多
关键词 Hydrogen production Zn3In2S6 Formic acid MOS2 PHOTOCATALYSIS
下载PDF
Preface to Special Issue for 2nd Chinese Symposium on Photocatalytic Materials (CSPM2)
3
作者 Jiaguo Yu Zhaosheng Li Shifu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期1-2,共2页
With the ever-increasing consumption of fossil fuels and the increment in environmental pollution problems,developing sustainable and renewable energy sources and environmentally friendly purification methods has beco... With the ever-increasing consumption of fossil fuels and the increment in environmental pollution problems,developing sustainable and renewable energy sources and environmentally friendly purification methods has become an appeal investigation all over the world.Photocatalysis can provide promising solutions to these issues,by utilizing solar light to reduce CO2 into hydrocarbon fuels,to split water into hydrogen and to mineralize organic pollutants into inorganic substance.However,a huge obstacle to the application of this technology is its low photocatalytic efficiency.Further improvement on the performance of photocatalytic materials is urgently needed.Therefore,this investigation topic was within the scope of The 2nd Chinese Symposium on Photocatalytic Materials(CSPM2)held at Nanjing Jinling Riverside Hotel,Nanjing,China on November 8-11,2019.This conference was organized by Nanjing University,Huaibei Normal University,Changsha University,Fuzhou University and Wuhan universityof Technology,and supported by National Natural Science Foundation of China(NSFC),Nanjing University,Huaibei Normal University,Changsha University,Wuhan University of Technology,Beijing Perfectlight and others.There are more than 420 experts and students attending this symposium,and 12 plenary lectures,17 keynote lectures,9 invited lectures,12 oral lectures and 115 posters presented.Finally,18 excellent posters were selected. 展开更多
关键词 utilizing NANJING INCREMENT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部