期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:3
1
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
2
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 Coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
Effect of non-uniform swelling on coal multiphysics during gas injection: The triangle approach
3
作者 Yifan Huang Jishan Liu +2 位作者 Yaoyao Zhao Derek Elsworth Yee-Kwong Leong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1362-1372,共11页
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in... In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered. 展开更多
关键词 Transient process HETEROGENEITY Swelling triangle Swelling path Non-uniform swelling coefficient
下载PDF
Characteristics of coal resources in China and statistical analysis and preventive measures for coal mine accidents 被引量:1
4
作者 Chaolin Zhang Peizhong Wang +2 位作者 Enyuan Wang Dapeng Chen Chao Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期45-57,共13页
In the process of green and smart mine construction under the context of carbon neutrality,China's coal safety situation has been continuously improved in recent years.In order to recognize the development of coal... In the process of green and smart mine construction under the context of carbon neutrality,China's coal safety situation has been continuously improved in recent years.In order to recognize the development of coal production in China and prepare for future monitoring and prevention of safety incidents,this study mainly elaborated on the basic situation of coal resources and national mining accidents over the past five years(2017-2021),from four dimensions(accident level,type,region,and time),and then proposed the preventive measures based on accident statistical laws.The results show that the storage of coal resources has obvious geographic characteristics,mainly concentrated in the Midwest,with coal resources in Shanxi and Shaanxi accounting for about 49.4%.The proportion of coal consumption has dropped from 70.2%to 56%between 2011 and 2021,but still accounts for more than half of the all.Meanwhile,the accident-prone areas are positively correlated with the amount of coal production.Among different levels of coal mine accidents,general accidents had the highest number of accidents and deaths,with 692 accidents and 783 deaths,accounting for 87.6%and 54.64%respectively.The frequency of roof,gas,and transportation accidents is relatively high,and the number of single fatalities caused by gas accidents is the largest,about 4.18.In terms of geographical distribution of accidents,the safety situation in Shanxi Province is the most severe.From the time distribution of coal mine accidents,the accidents mainly occurred in July and August,and rarely occurred in February and December.Finally,the"4+4"safety management model is proposed,combining the statistical results with coal production in China.Based on the existing health and safety management systems,the manage-ments are divided into four sub-categories,and more specific measures are suggested. 展开更多
关键词 Resource characteristics Coal mine accidents Security situation Safety 4+4 model Preventive measures
下载PDF
In-situ observation and modeling approach to evolution of pore-fracture structure in coal 被引量:2
5
作者 Hongwei Zhou Zelin Liu +3 位作者 Jiawei Zhao Bocen Chen Xiangnan Li Jiangcheng Zhong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期265-274,共10页
The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS... The characterisation of the pore-fracture structure(PFS)and its evolution in coal during mining are essential for preventing gas outbursts and improving gas extraction efficiency.In this study,the evolution of the PFS in coal samples under the condition of mining stress was directly captured in situ by combination of the mechanical testing system with high-precision visualisation nuclear magnetic resonance equipment.A fractional derivative model was established to describe the relationship between stress and porosity based on experimental results of the PFS under different stress states.The results showed that with an increase in the deviatoric stress,the adsorption pore content increases rapidly initially and then increases slowly or remains unchanged;the seepage pore and fracture(SPF)content decreases initially and then increases.The SPF compressibility coefficient decreases with an increase in the deviatoric stress.The fractional derivative model can accurately describe the stress sensitivity of the SPFs at the pre-peak stage,thus providing a new approach for accurately characterising the seepage characteristics of coal reservoirs. 展开更多
关键词 Pore-fracture structure Fractional derivative Stress sensitivity COMPRESSIBILITY Nuclear magnetic resonance imaging
下载PDF
Movement and deformation characteristics of overlying rock mass in deep coal seam 被引量:1
6
作者 LI Yong ZHENG Jing +4 位作者 WANG Feng-nian HU Chao-wen YANG Fan MA Xin-gen TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1725-1741,共17页
The 110 mining method is an innovative and useful coal mining technology.It mainly relies on two technologies to improve coal mining rate:Top cutting and pressure relief,Negative Poisson’s ratio anchor cable(NPR anch... The 110 mining method is an innovative and useful coal mining technology.It mainly relies on two technologies to improve coal mining rate:Top cutting and pressure relief,Negative Poisson’s ratio anchor cable(NPR anchor cable)support.This study develops a large-scale physical model test using the speckle monitoring system(DIC),the stress-strain monitoring system,and the infrared thermal imaging system to deeply investigate the roadway deformation and failure law of the 110 mining method,the displacement movement mechanism of the overlying rock mass,and the change law of rock pressure.Results showed that pillarless coal mining utilizing mine pressure and rock fragmentation and expansion characteristics,the use of cut top pressure relief and NPR anchor stress compensation technology in the kilometer level of deep underground coal mining still has a positive effect along the tunnel space.In addition,they can reduce surface subsidence,provide a scientific basis for ecological protection,and develop other kilometer-level deep soft rock high-ground stress underground projects. 展开更多
关键词 Cut seam DISPLACEMENT NPR anchor cable Physical model Numerical simulation
下载PDF
Simulation research on the influence of eroded primary key strata on dynamic strata pressure of shallow coal seams in gully terrain 被引量:13
7
作者 Zhang Zhiqiang Xu Jialin +1 位作者 Zhu Weibing Shan Zhenjun 《International Journal of Mining Science and Technology》 2012年第1期51-55,共5页
In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental me... In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine. 展开更多
关键词 地形仿真 地层压力 主关键层 沟壑 浅埋煤层 侵蚀 DSP PKS
下载PDF
Fluidized mining and in-situ transformation of deep underground coal resources: a novel approach to ensuring safe, environmentally friendly, low-carbon, and clean utilisation 被引量:11
8
作者 Yang Ju Yan Zhu +4 位作者 Heping Xie Xiaodong Nie Yong Zhang Chang Lu Feng Gao 《International Journal of Coal Science & Technology》 EI 2019年第2期184-196,共13页
Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on... Traditional coal mining and utilisation patterns are severely detrimental to natural resources and environments and significantly impede safe, low-carbon, clean, and sustainable utilisation of coal resources. Based on the idea of in situ fluidized coal mining that aims to transform solid coal into liquid or gas and transports the fluidized resources to the ground to ensure safe mining and low-carbon and clean utilisation, in this study, we report on a novel in situ unmanned automatic mining method. This includes a flexible, earthworm-like unmanned automatic mining machine (UAMM) and a coal mine layout for in situ fluidized coal mining suitable for the UAMM. The technological and economic advantages and the carbon emission reduction of the UAMM-based in situ fluidized mining in contrast to traditional mining technologies are evaluated as well. The development trends and possible challenges to this design are also discussed. It is estimated that the proposed method costs approximately 49% of traditional coal mining costs. The UAMM-based in situ fluidized mining and transformation method will reduce CO2 emissions by at least 94.9% compared to traditional coal mining and utilisation methods. The proposed approach is expected to achieve safe and environmentally friendly coal mining as well as lowcarbon and clean utilisation of coal. 展开更多
关键词 IN-SITU fluidized MINING Unmanned automatic MINING machine MINE layout Coal resources Low-carbon Environmental protection
下载PDF
Experimental study on the interrelation of multiple mechanical parameters in overburden rock caving process during coal mining in longwall panel
9
作者 Daixin Deng Hongwei Wang +2 位作者 Lili Xie Zeliang Wang Jiaqi Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期265-289,共25页
In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of th... In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine. 展开更多
关键词 Overburden rock caving Multiple mechanical parameters Interrelation characterization Precursor information
下载PDF
Fracture features of brittle coal under uniaxial and cyclic compression loads
10
作者 Shikang Song Ting Ren +3 位作者 Linming Dou Jian Sun Xiaohan Yang Lihai Tan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期60-72,共13页
Under the efects of complex geological and stress environments,burst hazards continue to be a major challenge for underground space utilization and deep resources exploration as its occurrence can lead to personnel ca... Under the efects of complex geological and stress environments,burst hazards continue to be a major challenge for underground space utilization and deep resources exploration as its occurrence can lead to personnel causalities,equipment damage and structural collapse.Considering the stress path experienced by in-situ coal body,cyclic loading appears in quite various forms for instance shearer cutting,overlying strata breakage,hydro-fracturing and blasting,during tunnel,mining and underground space utilizing process.The stability of the underground coal body subject to periodic loading/unloading stress is extremely important for maintain the function of designed engineering structure for waste storage,safe mining,roadway development,gas recovery,carbon sequestration and so on.The mechanical properties of hard rock subject to cyclic fatigue loads has been intensively investigated by many researchers as the rock burst induced by supercritical loads has long been a safety risk and engineering problems for civil and tunneling engineering under deep overburden.More recently,the mechanical properties of coal samples under cyclic fatigue loads is investigated from the aspect of hysteresis,energy dissipation and irreversible damage as the burst hazards of brittle coal is rising in many countries.However,the crack propagation and fracture pattern of brittle coal need more research to understand the micro mechanism of burst incubation subject to cyclic fatigue loads as brittle coal can store more elastic strain energy and rapidly release the energy when its ultimate strength once reached.This research studied the internal crack status corresponding to diferent cyclic fatigue loading stage of brittle coal samples.The AE monitoring was applied during the uniaxial and cyclic loading process of brittle coal samples to record the crack intensity of samples at diferent loading stages.The damage evolution curve corresponding to loading status was then determined.The fracture pattern of coal samples determined by micro-CT scan was observed and discussed.It has been found by this paper that brittle coal of uniaxial compression tests demonstrated sudden failure caused by major splitting fracture while that of cyclic fatigue tests experienced progressive failure with mixture fracture network. 展开更多
关键词 FRACTURE CRACK Coal burst Acoustic emission Computed tomography
下载PDF
Experimental study on the movement law of overlying rock non-pillar coal overhead mining
11
作者 LI Yong ZHENG Jing +5 位作者 WANG Feng-nian MA Xin-gen ZHANG Rui-xue SUN Ying-ying YIN Jian-bin TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1759-1773,共15页
Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the ... Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects. 展开更多
关键词 No pillar mining Overhead mining NPR anchor cable Physical model of similar materials FLAC3D Numerical simulation Motion of overburden
下载PDF
Geopolymer-based modification of blasting sealing materials and optimization of blasting block size in coal seams of open pit mines
12
作者 Xiaohua Ding Zhongchen Ao +5 位作者 Wei Zhou Hao Qin Zhongao Yang Wen An Xiaoshuang Li Honglin Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1551-1562,共12页
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f... This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages. 展开更多
关键词 Open pit coal mine Coal seam blasting Sealing materials Block size optimization Numerical simulation
下载PDF
Damage degradation mechanism and macro-meso structural response of mudstone after water wetting
13
作者 SHAO Zhixin SONG Yanqi +3 位作者 ZHENG Junjie SHEN Fuxin LIU Chuanpeng YANG Juntao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2825-2843,共19页
The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety ... The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding the water-rock interaction and stability control of mudstone slope. 展开更多
关键词 Moisture absorption of mudstone Computed tomography scanning test Fracture structure evolution Macro-meso structural response Deterioration mechanism
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
14
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures Infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading
15
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
16
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
The extraction of effective components and an antioxidant activity study of Tulipa edulis
17
作者 Doudou Zhang Dong Xiao +5 位作者 Tingting Yin Shuangzhi Zhao Olena Zhur Xun Xiao Hailun He Leilei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期276-286,共11页
Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity w... Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food. 展开更多
关键词 Tulipa edulis Oxidative stress PURIFICATION ANTIOXIDANT
下载PDF
Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China 被引量:67
18
作者 Linming Dou Zonglong Mu +2 位作者 Zhenlei Li Anye Cao Siyuan Gong 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期278-288,共11页
As one of the dynamic disasters of coal mines,rockburst seriously affects underground safe coal mining.Based on the laboratory test,field test,and theoretical analysis,this study proposed the principle of the rock bur... As one of the dynamic disasters of coal mines,rockburst seriously affects underground safe coal mining.Based on the laboratory test,field test,and theoretical analysis,this study proposed the principle of the rock burst induced by the combination of dynamic and static stresses and divided such rock burst into three types,including induced by primary dynamic stress,mainly induced by dynamic stress,and by dynamic stress in low critical stress state.The expressions of the static stress induced by coal mining and dynamic stress induced by mining tremors were obtained.Moreover,theories and technologies at home and abroad were summarized concerning the monitoring,forecasting,and preventing of rockburst.These mainly include the zoning and leveling forecasting method,electromagnetic radiation technology,elastic wave and seismic wave computed tomography technologies in aspect of rockburst monitoring,as well as the intensity weakening theory,the strong-soft-strong structure effect,the directional hydraulic fracturing technology,the roadway support system in regards of rockburst prevention.The prospect of rockburst development suggested that researches concerning the rockburst mechanism should be quantitatively developed around the roadway and coalface surrounding coal-rock mass.It should be focused on the rockburst mechanism and prevention technology of mining with over 1,000 km deep and mining in large tectonic zone.In addition,the monitoring and prevention of rockburst should be based on rockburst mechanism. 展开更多
关键词 ROCKBURST Dynamic stress Static stress Mining tremor Monitoring and forecasting PREVENTION
下载PDF
Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation 被引量:25
19
作者 Junqing Meng Feifei Yin +3 位作者 Shichao Li Ruquan Zhong Zeyuan Sheng Baisheng Nie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期577-584,共8页
Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/s... Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/surfactant/coal systems with different concentrations were constructed.The influence of surfactant with different concentrations on the wettability of coal was concluded by analyzing various properties from the energetic behaviors to the dynamic characteristics.The results show that the interfacial tension decreases sharply and then rises slowly with the increase of SDBS surfactant concentration,obtaining that surfactants can obviously reduce the interfacial tension.The surfactant molecules could be detected at the water/coal interface through analyzing the system’s relative concentration distribution.In addition,the difference in the wettability of surfactants on coal surfaces is caused by the spatial distribution differences of alkyl chains and the benzene ring of the surfactant molecules.And the negative interaction energy between SDBS and the coal surface indicates that adsorption process is spontaneous.Furthermore,it is of great practical significance for improving the dust reduction effect and reducing the disaster of coal dust by exploring the effects of surfactant molecules on the wettability of coal. 展开更多
关键词 Sodium dodecyl BENZENE SULFONATE Concentration WETTABILITY Interfacial tension Molecular dynamics simulation
下载PDF
Characteristics and applications of gas desorption with excavation disturbances in coal mining 被引量:31
20
作者 Jiachen Wang 《International Journal of Coal Science & Technology》 EI 2015年第1期30-37,共8页
关键词 瓦斯解吸 解吸特征 开挖扰动 煤开采 实验系统 应用 动力传动系统 试验系统
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部