Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a princi...Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.展开更多
Plant height and heading date are important agronomic traits in wheat(Triticum aestivum L.)that affect final grain yield.In wheat,knowledge of pseudo-response regulator(PRR)genes on agronomic traits is limited.Here,we...Plant height and heading date are important agronomic traits in wheat(Triticum aestivum L.)that affect final grain yield.In wheat,knowledge of pseudo-response regulator(PRR)genes on agronomic traits is limited.Here,we identify a wheat TaPRR95 gene by genome-wide association studies to be associated with plant height.Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height,particularly the peduncle,with an earlier heading date.The longer peduncle is mainly caused by the increased cell elon-gation at its upper section,whilst the early heading date is accompanied by elevated expression of flow-ering genes,such as TaFT and TacO1.A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAAVAux genes for auxin signaling inpr95abad plants that may act as a regulatory mechanism to promote robust plant growth.A haplotype analysis identifies a TaPRR95-B haplotype(Hap2)to be closely associated with reduced plant height and increased thousand-grain weight.Moreover,the Hap2 frequency is higher in cultivars than that in landraces,suggesting the artifi-cial selection on the allele during wheat breeding.These findings suggest that TaPRR95 is a regulator for plant height and heading date,thereby providing an important target for wheat yield improvement.展开更多
Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,j...Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,je0407,with an 84.34%-89.35%smaller flag leaf angle compared with the wild type.The mutant also had an abnormal lamina joint and no ligule or auricle.Genetic analysis indicated that the ligule was controlled by two recessive genes,which were mapped to chromosomes 2AS and 2DL.The mutant allele on chromosome 2AS was named Tafla1b,and it was fine mapped to a 1 Mb physical interval.The mutant allele on chr.2DL was identified as Taspl8b,a novel allele of TaSPL8 with a missense mutation in the second exon,which was used to develop a cleaved amplified polymorphic sequence marker.F3 and F4 lines derived from crosses between Jing411 and je0407 were genotyped to investigate interactions between the Tafla1b and Taspl8b alleles.Plants with the Tafla1b/Taspl8a genotype had 58.41%-82.76%smaller flag leaf angles,6.4%-24.9%shorter spikes,and a greater spikelet density(0.382 more spikelets per cm)compared with the wild type.Plants with the Tafla1a/Taspl8b genotype had 52.62%-82.24%smaller flag leaf angles and no differences in plant height or spikelet density compared with the wild type.Tafla1b/Taspl8b plants produced erect leaves with an abnormal lamina joint.The two alleles had dosage effects on ligule formation and flag leaf angle,but no significant effect on thousand-grain weight.The mutant alleles provide novel resources for improvement of wheat plant architecture.展开更多
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grai...In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grain morphology,and accordingly was named WPA1 for Wheat Plant Architecture 1.The mutant was first observed among EMS-treated plants and repeatedly appeared in multiple occasions.展开更多
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations...Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.展开更多
The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship bet...The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood. In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments. We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield. Using a genome-wide association study(GWAS)coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT. Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture. Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication-and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement. Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize. This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.展开更多
A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,th...A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,the application of mapping results from a GWAS panel to conventional wheat breeding remains a challenge.In this study,we first report a general genetic map which was constructed from 44 published linkage maps.It permits the estimation of genetic distances between any two genetic loci with physical map positions,thereby unifying the linkage relationships between QTL,genes,and genomic markers from multiple genetic populations.Second,we describe QTL mapping in a wheat GWAS panel of 688 accessions,identifying 77 QTL associated with 12 yield and grain-quality traits.Because these QTL have known physical map positions,they could be mapped onto the general map.Finally,we present a design approach to wheat breeding by using known QTL information and computer simulation.Potential crosses between parents in the GWAS panel may be evaluated by the relative frequency of the target genotype,trait correlations in simulated progeny populations,and genetic gain of selected progenies.It is possible to simultaneously improve yield and grain quality by suitable parental selection,progeny population size,and progeny selection scheme.Applying the design approach will allow identifying the most promising crosses and selection schemes in advance of the field experiment,increasing predictability and efficiency in wheat breeding.展开更多
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality an...As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality and yield of soybean.To address this,exploring excellent genes for improving drought resistance in soybean is crucial.In this study,we identified natural variations of GmFNSII-2(flavone synthase II)significantly affect the drought resistance of soybeans.Through sequence analysis of GmFNSII-2 in 632 cultivated and 44 wild soybeans nine haplotypes were identified.The full-length allele GmFNSII-2^(C),but not the truncated allele GmFNSII-2^(A) possessing a nonsense nucleotide variation,increased enzyme activity.Further research found that GmDREB3,known to increase soybean drought resistance,bound to the promoter region of GmFNSII-2^(C).GmDREB3 positively regulated the expression of GmFNSII-2^(C),increased flavone synthase abundance and improved the drought resistance.Furthermore,a singlebase mutation in the GmFNSII-2^(C) promoter generated an additional drought response element(CCCCT),which had stronger interaction strength with GmDREB3 and increased its transcriptional activity under drought conditions.The frequency of drought-resistant soybean varieties with Hap 1(Pro:GmFNSII-2^(C))has increased,suggesting that this haplotype may be selected during soybean breeding.In summary,GmFNSII-2^(C) could be used for molecular breeding of drought-tolerant soybean.展开更多
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a...Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.展开更多
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-...Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.展开更多
Heterosis,also known as hybrid vigor,is commonly observed in rice crosses.The hybridization of rice species or subspecies exhibits robust hybrid vigor,however,the direct harnessing of this vigor is hindered by reprodu...Heterosis,also known as hybrid vigor,is commonly observed in rice crosses.The hybridization of rice species or subspecies exhibits robust hybrid vigor,however,the direct harnessing of this vigor is hindered by reproductive isolation.Here,we review recent advances in the understanding of the molecular mechanisms governing reproductive isolation in inter-subspecific and inter-specific hybrids.This review encompasses the genetic model of reproductive isolation within and among Oryza sativa species,emphasizing the essential role of mitochondria in this process.Additionally,we delve into the molecular intricacies governing the interaction between mitochondria and autophagosomes,elucidating their significant contribution to reproductive isolation.Furthermore,our exploration extends to comprehending the evolutionary dynamics of reproductive isolation and speciation in rice.Building on these advances,we offer a forward-looking perspective on how to overcome the challenges of reproductive isolation and facilitate the utilization of heterosis in future hybrid rice breeding endeavors.展开更多
Achieving high yield and good quality in crops is essential for human food security and health.However,there is usually disharmony between yield and quality.Seed storage protein(SSP)and starch,the predominant componen...Achieving high yield and good quality in crops is essential for human food security and health.However,there is usually disharmony between yield and quality.Seed storage protein(SSP)and starch,the predominant components in cereal grains,determine yield and quality,and their coupled synthesis causes a yield–quality trade-off.Therefore,dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality.Here,we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops,including maize,rice and wheat.We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights.We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding.Finally,future perspectives on major challenges are proposed.展开更多
Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-cons...Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-consuming and expensive.Furthermore,genes encoding seed-storage proteins(ssPs)form multigene families and are repetitive,with gaps commonplace in several genome assemblies.To overcome these barriers and efficiently identify superior wheat SSP alleles,we developed"PanSK"(Pan-SSP k-mer)for genotype-to-phenotype prediction based on an SsP-based pangenome resource.PanSK uses 29-mer sequences that represent each ssP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars.Genome-wide association studies with k-mers identified 23 Ssp genes associated with end-use quality that represent novel targets for improvement.We evaluated the effect of rye secalin genes on end-use quality and found that removal of w-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality.Finally,using machine-learning-based prediction inspired by PanSK,we predicted the quality phenotypes with high accuracy from genotypes alone.This study provides an effective approach for genome design based on ssP genes,enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.展开更多
Dear Editor,In the era of big data and artificial intelligence,"smart breeding"has become a broad conceptual framework encompassing the paradigm shift of crop breeding to relying on analysis of high-throughp...Dear Editor,In the era of big data and artificial intelligence,"smart breeding"has become a broad conceptual framework encompassing the paradigm shift of crop breeding to relying on analysis of high-throughput population genetics and phenomics data to conduct genomic selection,allowing identification and optimal use of the genetic potential in crop species(Xiao et al.,2022;Xu et al.,2022;Wang et al.,2023).Most existing tools for analyzing high-throughput breeding data require extensive computational power,complex installation processes,and command-line expertise and are therefore challenging and inconvenient for the majority of researchers and breeders(Brandies and Hogg,2021).展开更多
Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to ma...Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.展开更多
Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.I...Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.In this study,we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures.Interestingly,we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7.We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs,thereby promoting the ubiquitination of OsJAZ1 by the SCF^(OsCOI1a/OsCOI1b) complex and degradation via the 26S proteasome.This process ultimately releases OsMYC2,a core transcriptional regulator in the JA signaling pathway,to activate or repress JA-responsive genes,thereby maintaining normal plant(spikelet)development.However,in the osprmt6a-1 mutant,reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs.As a result,OsJAZ1 proteins become more stable,repressing JA responses,thus causing the formation of abnormal spikelet structures.Moreover,we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner,thereby establishing a negative feedback loop to balance JA signaling.We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures.Collectively,our study establishes a direct molecular link between arginine methylation and JA signaling in rice.展开更多
Rice(Oryza sativa L.)isa staplecropforhalf theworld's Ipopulation and an important contributor to world food security.The discovery and application of cytoplasmic male sterility(CMS)and fertility restoration(Rf)ge...Rice(Oryza sativa L.)isa staplecropforhalf theworld's Ipopulation and an important contributor to world food security.The discovery and application of cytoplasmic male sterility(CMS)and fertility restoration(Rf)genetic materials have allowed the production of three-line hybrid rice(Kim and Zhang,2018),successfully harnessing heterosis in crops.Three major CMS and/or Rf systems are commonly used to produce three-line hybrid rice:Wild Abortive(CMS-WA),Boroll(CMS-BT),and Honglian(CMS-HL).Among these,the CMS-WA system is the most widely employed(Sattari et al.,2007;Chen and Liu,2014;Huang et al.,2014).Several Rf genes from different CMS systems have been cloned in rice,including Rf4 for CMS-WA(Tang et al.,2014),Rf1a and Rf1b for CMS-BT(Wang et al.,2006),Rf5,and Rf6 for CMS-HL(Huet al.,2012;Huang et al.,2015),and Rf19for CMS-FA(Jiang et al.,2022).A molecular mechanism and evolutionary model for the CMS-WA gene WA352c have also been reported(Luo et al.,2013;Tang et al.,2017).展开更多
Dear Editor,The world faces unprecedented challenges for crop yield improvement to feed an expanding human population under limited agricultural resources and an increasingly erratic climate(Wheeler and von Braun,2013...Dear Editor,The world faces unprecedented challenges for crop yield improvement to feed an expanding human population under limited agricultural resources and an increasingly erratic climate(Wheeler and von Braun,2013).Bread wheat is one of the most widely cultivated cereal crops,with both grain and flag leaf morphologies determining final yield potential(Xie et al.,2015;Zanella et al.,2023).Candidate genes affecting these traits are therefore highly desirable targets for breeding programs.展开更多
基金supported by grants from the National Natural Science Foundation of China(32272079 and 32060474)the Yunnan Provincial Science and Technology Department,China(202101AS070001 and 202201BF070001-011)。
文摘Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution. The Green Revolution gene Semidwarf 1(SD1), which modulates gibberellic acid(GA) biosynthesis, plays a principal role in determining rice plant height. Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production. The plant height mediated by SD1 also favors grain yield under certain conditions. However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production. In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions. In response to dryland environments, rice requires a reduction in plant height to cope with water deficits. Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation. Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem. Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields. In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height. During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height. Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production. All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.
基金We are grateful for the funding from STI 2030-Major Projects(2023ZD0406802)the National Natural Science Foundation of China(32072066,32172050,3220151460)+2 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215)CAAS Agricultural Science and Technology Innovation Program(CAAS-ZDRW202002,CAAS-ZDRW202201)Hebei Natural Science Foundation(C2021205013).
文摘Plant height and heading date are important agronomic traits in wheat(Triticum aestivum L.)that affect final grain yield.In wheat,knowledge of pseudo-response regulator(PRR)genes on agronomic traits is limited.Here,we identify a wheat TaPRR95 gene by genome-wide association studies to be associated with plant height.Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height,particularly the peduncle,with an earlier heading date.The longer peduncle is mainly caused by the increased cell elon-gation at its upper section,whilst the early heading date is accompanied by elevated expression of flow-ering genes,such as TaFT and TacO1.A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAAVAux genes for auxin signaling inpr95abad plants that may act as a regulatory mechanism to promote robust plant growth.A haplotype analysis identifies a TaPRR95-B haplotype(Hap2)to be closely associated with reduced plant height and increased thousand-grain weight.Moreover,the Hap2 frequency is higher in cultivars than that in landraces,suggesting the artifi-cial selection on the allele during wheat breeding.These findings suggest that TaPRR95 is a regulator for plant height and heading date,thereby providing an important target for wheat yield improvement.
基金supported by the National Key Research and Development Project of China(2022YFD1200700)the Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,Innovation Program of Chinese Academy of Agricultural Sciences,and the China Agriculture Research System(CARS-03).
文摘Flag leaf angle is one of the key target traits in high yield wheat breeding.A smaller flag leaf angle reduces shading and enables plants to grow at a higher density,which increases yield.Here we identified a mutant,je0407,with an 84.34%-89.35%smaller flag leaf angle compared with the wild type.The mutant also had an abnormal lamina joint and no ligule or auricle.Genetic analysis indicated that the ligule was controlled by two recessive genes,which were mapped to chromosomes 2AS and 2DL.The mutant allele on chromosome 2AS was named Tafla1b,and it was fine mapped to a 1 Mb physical interval.The mutant allele on chr.2DL was identified as Taspl8b,a novel allele of TaSPL8 with a missense mutation in the second exon,which was used to develop a cleaved amplified polymorphic sequence marker.F3 and F4 lines derived from crosses between Jing411 and je0407 were genotyped to investigate interactions between the Tafla1b and Taspl8b alleles.Plants with the Tafla1b/Taspl8a genotype had 58.41%-82.76%smaller flag leaf angles,6.4%-24.9%shorter spikes,and a greater spikelet density(0.382 more spikelets per cm)compared with the wild type.Plants with the Tafla1a/Taspl8b genotype had 52.62%-82.24%smaller flag leaf angles and no differences in plant height or spikelet density compared with the wild type.Tafla1b/Taspl8b plants produced erect leaves with an abnormal lamina joint.The two alleles had dosage effects on ligule formation and flag leaf angle,but no significant effect on thousand-grain weight.The mutant alleles provide novel resources for improvement of wheat plant architecture.
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
文摘In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grain morphology,and accordingly was named WPA1 for Wheat Plant Architecture 1.The mutant was first observed among EMS-treated plants and repeatedly appeared in multiple occasions.
基金financially supported by the National Key Research and Development Program of China (2022YFD1200900 and 2022YFD1200904)the Agricultural Science and Technology Innovation Program+1 种基金Fundamental Research Funds for Central NonProfit of Institute of Crop Sciences, CAASShijiazhuang S&T Project (232490022A and 232490432A)
文摘Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding.
基金supported by grants from the National Natural Science Foundation of China (31971891)the Guangxi Key Research and Development Projects, China (GuikeAB21238004)+1 种基金the Scientific Innovation 2030 Project, China (2022ZD0401703)the Modern AgroIndustry Technology Research System of Maize, China (CARS-02-03)。
文摘The crown root system is the most important root component in maize at both the vegetative and reproductive stages. However, the genetic basis of maize crown root traits(CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood. In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments. We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield. Using a genome-wide association study(GWAS)coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT. Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture. Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication-and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement. Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize. This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.
基金the Hainan Yazhou Bay Seed Laboratory(B21Y10209 and B22C10212)China Postdoctoral Science Foundation(2022M713433)+1 种基金National Natural Science Foundation of China(31861143003)Innovation Program of Chinese Academy of Agricultural Sciences.
文摘A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,the application of mapping results from a GWAS panel to conventional wheat breeding remains a challenge.In this study,we first report a general genetic map which was constructed from 44 published linkage maps.It permits the estimation of genetic distances between any two genetic loci with physical map positions,thereby unifying the linkage relationships between QTL,genes,and genomic markers from multiple genetic populations.Second,we describe QTL mapping in a wheat GWAS panel of 688 accessions,identifying 77 QTL associated with 12 yield and grain-quality traits.Because these QTL have known physical map positions,they could be mapped onto the general map.Finally,we present a design approach to wheat breeding by using known QTL information and computer simulation.Potential crosses between parents in the GWAS panel may be evaluated by the relative frequency of the target genotype,trait correlations in simulated progeny populations,and genetic gain of selected progenies.It is possible to simultaneously improve yield and grain quality by suitable parental selection,progeny population size,and progeny selection scheme.Applying the design approach will allow identifying the most promising crosses and selection schemes in advance of the field experiment,increasing predictability and efficiency in wheat breeding.
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金supported by grants from the National Key Research and Development Program of China(2023YFF1000404,2022YFF10001501)the National Natural Science Foundation of China(32171971)。
文摘As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality and yield of soybean.To address this,exploring excellent genes for improving drought resistance in soybean is crucial.In this study,we identified natural variations of GmFNSII-2(flavone synthase II)significantly affect the drought resistance of soybeans.Through sequence analysis of GmFNSII-2 in 632 cultivated and 44 wild soybeans nine haplotypes were identified.The full-length allele GmFNSII-2^(C),but not the truncated allele GmFNSII-2^(A) possessing a nonsense nucleotide variation,increased enzyme activity.Further research found that GmDREB3,known to increase soybean drought resistance,bound to the promoter region of GmFNSII-2^(C).GmDREB3 positively regulated the expression of GmFNSII-2^(C),increased flavone synthase abundance and improved the drought resistance.Furthermore,a singlebase mutation in the GmFNSII-2^(C) promoter generated an additional drought response element(CCCCT),which had stronger interaction strength with GmDREB3 and increased its transcriptional activity under drought conditions.The frequency of drought-resistant soybean varieties with Hap 1(Pro:GmFNSII-2^(C))has increased,suggesting that this haplotype may be selected during soybean breeding.In summary,GmFNSII-2^(C) could be used for molecular breeding of drought-tolerant soybean.
基金supported by the National Key Research and Development Program of China(2022YFD1200700)the Nuclear Energy Development Research Program of the State Administration of Science,Technology,and Industry for National Defense(Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation)the China Agriculture Research System of MOF and MARA(CARS-03)。
文摘Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.
基金This work was funded by the National Key Research and Development Program of China(2023YFF1000404)the Shenzhen Basic Research and Development Key Program of China(JCYJ20200109150713553)Hainan Key Research and Development in Modern Agriculture of China(ZDYF2021Y128).
文摘Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.
基金supported by National Key R&D Program of China(2022YFD1200801)National Natural Science Foundation of China(31991224 and U2002202)+3 种基金Jiangsu Research and Development Program(BE2021360)the Natural Science Foundation of Jiangsu Province,China(BK20200023)the Fundamental Research Funds for the Central Universities(ZJ22195020)the Jiangsu Collaborative Innovation Center for Modern Crop Production.
文摘Heterosis,also known as hybrid vigor,is commonly observed in rice crosses.The hybridization of rice species or subspecies exhibits robust hybrid vigor,however,the direct harnessing of this vigor is hindered by reproductive isolation.Here,we review recent advances in the understanding of the molecular mechanisms governing reproductive isolation in inter-subspecific and inter-specific hybrids.This review encompasses the genetic model of reproductive isolation within and among Oryza sativa species,emphasizing the essential role of mitochondria in this process.Additionally,we delve into the molecular intricacies governing the interaction between mitochondria and autophagosomes,elucidating their significant contribution to reproductive isolation.Furthermore,our exploration extends to comprehending the evolutionary dynamics of reproductive isolation and speciation in rice.Building on these advances,we offer a forward-looking perspective on how to overcome the challenges of reproductive isolation and facilitate the utilization of heterosis in future hybrid rice breeding endeavors.
基金supported by Natural Science Foundation of China(32272182)National Key Research and Development Program of China(2022YFF1002904,2022YFD1201500)+1 种基金STI 2030-Major Projects(2023ZD0406903)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS)。
文摘Achieving high yield and good quality in crops is essential for human food security and health.However,there is usually disharmony between yield and quality.Seed storage protein(SSP)and starch,the predominant components in cereal grains,determine yield and quality,and their coupled synthesis causes a yield–quality trade-off.Therefore,dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality.Here,we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops,including maize,rice and wheat.We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights.We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding.Finally,future perspectives on major challenges are proposed.
基金STI 2030-Major Projects(2023ZD04069)the National Natural Science Foundation of China(grant no.32125030)+1 种基金the Pinduoduo-China Agricultural University Research Fund(PC2023A01003)the Major Program of the National Agricultural Science and Technology of China(NK20220601).
文摘Wheat is a staple foodfor more than 35%of the world's population,with wheatflourused to make hundreds of baked goods.Superior end-use quality is a major breeding target;however,improving it is especially time-consuming and expensive.Furthermore,genes encoding seed-storage proteins(ssPs)form multigene families and are repetitive,with gaps commonplace in several genome assemblies.To overcome these barriers and efficiently identify superior wheat SSP alleles,we developed"PanSK"(Pan-SSP k-mer)for genotype-to-phenotype prediction based on an SsP-based pangenome resource.PanSK uses 29-mer sequences that represent each ssP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars.Genome-wide association studies with k-mers identified 23 Ssp genes associated with end-use quality that represent novel targets for improvement.We evaluated the effect of rye secalin genes on end-use quality and found that removal of w-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality.Finally,using machine-learning-based prediction inspired by PanSK,we predicted the quality phenotypes with high accuracy from genotypes alone.This study provides an effective approach for genome design based on ssP genes,enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
基金supported by the Alibaba Foundation,the National Natural Science Foundation of China(32188102 and 32361143514)the Innovation Program of Chinese Academy of Agricultural Sciences,and the Project of Hainan Yazhou Bay Seed Lab(B21HJ0223).
文摘Dear Editor,In the era of big data and artificial intelligence,"smart breeding"has become a broad conceptual framework encompassing the paradigm shift of crop breeding to relying on analysis of high-throughput population genetics and phenomics data to conduct genomic selection,allowing identification and optimal use of the genetic potential in crop species(Xiao et al.,2022;Xu et al.,2022;Wang et al.,2023).Most existing tools for analyzing high-throughput breeding data require extensive computational power,complex installation processes,and command-line expertise and are therefore challenging and inconvenient for the majority of researchers and breeders(Brandies and Hogg,2021).
基金the National Natural Science Foundation of China(32272049,32261143757)Sustainable Development International Cooperation Program from Bill&Melinda Gates Foundation(2022YFAG1002)+2 种基金the National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science&Technology Innovation Program(CAASZDRW202109)the China Scholarship Council.
文摘Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.
基金We thank Prof.Qiang Cai(College of Life Sciences,Wuhan University)and Prof.Zheng Yuan(School of Life Sciences and Biotechnology,Shanghai Jiao Tong University)for providing morphology data for the eg1-1 and eg2-1D mutants.This work was supported by grants from the National Key R&D Program of China(2022YFD1200100)STI2030-Major Projects(2023ZD0406802)the National Natural Science Foundation of China(no.92035301 and no.31771765).
文摘Although both protein arginine methylation(PRMT)and jasmonate(JA)signaling are crucial for regulating plant development,the relationship between these processes in the control of spikelet development remains unclear.In this study,we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures.Interestingly,we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7.We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs,thereby promoting the ubiquitination of OsJAZ1 by the SCF^(OsCOI1a/OsCOI1b) complex and degradation via the 26S proteasome.This process ultimately releases OsMYC2,a core transcriptional regulator in the JA signaling pathway,to activate or repress JA-responsive genes,thereby maintaining normal plant(spikelet)development.However,in the osprmt6a-1 mutant,reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs.As a result,OsJAZ1 proteins become more stable,repressing JA responses,thus causing the formation of abnormal spikelet structures.Moreover,we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner,thereby establishing a negative feedback loop to balance JA signaling.We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures.Collectively,our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
基金support from the National Key Research and Development Program(2021YFD1200101).
文摘Rice(Oryza sativa L.)isa staplecropforhalf theworld's Ipopulation and an important contributor to world food security.The discovery and application of cytoplasmic male sterility(CMS)and fertility restoration(Rf)genetic materials have allowed the production of three-line hybrid rice(Kim and Zhang,2018),successfully harnessing heterosis in crops.Three major CMS and/or Rf systems are commonly used to produce three-line hybrid rice:Wild Abortive(CMS-WA),Boroll(CMS-BT),and Honglian(CMS-HL).Among these,the CMS-WA system is the most widely employed(Sattari et al.,2007;Chen and Liu,2014;Huang et al.,2014).Several Rf genes from different CMS systems have been cloned in rice,including Rf4 for CMS-WA(Tang et al.,2014),Rf1a and Rf1b for CMS-BT(Wang et al.,2006),Rf5,and Rf6 for CMS-HL(Huet al.,2012;Huang et al.,2015),and Rf19for CMS-FA(Jiang et al.,2022).A molecular mechanism and evolutionary model for the CMS-WA gene WA352c have also been reported(Luo et al.,2013;Tang et al.,2017).
基金financially supported by STI 2030-Major Projects(2023ZD0406802)the Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,the China Agriculture Research System of MOF and MARA(CARS-03)the Innovation Program of Chinese Academy of Agricultural Sciences。
文摘Dear Editor,The world faces unprecedented challenges for crop yield improvement to feed an expanding human population under limited agricultural resources and an increasingly erratic climate(Wheeler and von Braun,2013).Bread wheat is one of the most widely cultivated cereal crops,with both grain and flag leaf morphologies determining final yield potential(Xie et al.,2015;Zanella et al.,2023).Candidate genes affecting these traits are therefore highly desirable targets for breeding programs.