期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal‐organic framework‐derived multifunctional photocatalysts 被引量:3
1
作者 Yaping Zhang Jixiang Xu +1 位作者 Jie Zhou Lei Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期971-1000,共30页
Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the de... Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the derivatives avoid the poor conductivity and stability of MOFs.MOF‐derived nanomaterials can easily be regulated by a specific selection of metal nodes and organic linkers,resulting in multifunctionality in photocatalysis.MOF derivatives can be used not only as semiconductor photocatalysts,but also as co‐catalysts for photocatalytic hydrogen evolution,CO_(2) reduction,pollutants degradation,etc.This review focuses on the multifunctional applications of MOF derivatives in the field of photocatalysis.The researches in recent years are analyzed and summarized from the aspects of preparation,modification and application of MOF derivatives.At the end of the review,the development and challenges of MOF derivatives applied in photocatalysis in the future are put forward,in order to provide more references for further research in this field and bring new inspiration. 展开更多
关键词 MOF‐derived nanomaterials Semiconductor photocatalyst COCATALYST H_(2)evolution CO_(2)reduction Pollution degradation
下载PDF
Scalable synthesis of ultra‐small Ru_(2)P@Ru/CNT for efficient seawater splitting 被引量:1
2
作者 Dan Zhang Hongfu Miao +7 位作者 Xueke Wu Zuochao Wang Huan Zhao Yue Shi Xilei Chen Zhenyu Xiao Jianping Lai Lei Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1148-1155,共8页
In this study,an ultra‐fast and simple solvent‐free microwave method was successfully demonstrated using a series of ultra‐small(~2.5 nm)surfactant‐free Ru_(2)P@Ru/CNT heterostructures for the first time.The struc... In this study,an ultra‐fast and simple solvent‐free microwave method was successfully demonstrated using a series of ultra‐small(~2.5 nm)surfactant‐free Ru_(2)P@Ru/CNT heterostructures for the first time.The structure has a high‐density Ru component and Ru_(2)P component interface,which accelerates the hydrogen evolution reaction(HER).The prepared Ru_(2)P@Ru/CNT demonstrated excellent catalytic effects for the HER in alkaline media and real seawater.The experimental results indicate that ratio‐optimized Ru_(2)P@Ru/CNT(Ru_(2)P:Ru=66:34)requires only 23 and 29 mV to reach 10 mA cm^(-2)in 1.0 mol/L KOH and real seawater,respectively.These values are 10 and 24 mV lower than those of commercial Pt/C in 1.0 mol/L KOH(33 mV)and real seawater(53 mV),respectively,making it among the best non‐Pt HER reported in the literature.Additionally,the TOF of Ru_(2)P@Ru/CNT in alkaline freshwater and seawater were 13.1 and 8.5 s^(-1),respectively.These exceed the corresponding values for Pt/C,indicating that the catalyst has excellent intrinsic activity.The high current activity of Ru_(2)P@Ru/CNT in 1.0 mol/L KOH was explored,and only 77 and 104 mV were required to reach 500 and 1000 mA cm^(-2),respectively.After 100 h of durability testing,the catalyst retained excellent catalytic and structural stability in low current density,high current density,and seawater. 展开更多
关键词 Ultra‐small nanoparticles PHOSPHIDE Multi‐interface Solvent‐free microwave method Seawater SPLITTING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部