期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Near‑Instantaneously Self‑Healing Coating toward Stable and Durable Electromagnetic Interference Shielding 被引量:3
1
作者 Lihua Zou Chuntao Lan +6 位作者 Songlin Zhang Xianhong Zheng Zhenzhen Xu Changlong Li Li Yang Fangtao Ruan Swee Ching Tan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期452-467,共16页
Durable electromagnetic interference(EMI)shielding is highly desired,as electromagnetic pollution is a great concern for electronics’stable performance and human health.Although a superhydrophobic surface can extend ... Durable electromagnetic interference(EMI)shielding is highly desired,as electromagnetic pollution is a great concern for electronics’stable performance and human health.Although a superhydrophobic surface can extend the service lifespan of EMI shielding materials,degradation of its protection capability and insufficient self-healing are troublesome issues due to unavoidable physical/chemical damages under long-term application conditions.Here,we report,for the first time,an instantaneously self-healing approach via microwave heating to achieve durable shielding performance.First,a hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane(POTS)layer was coated on a polypyrrole(PPy)-modified fabric(PPy@POTS),enabling protection against the invasion of water,salt solution,and corrosive acidic and basic solutions.Moreover,after being damaged,the POTS layer can,for the first time,be instantaneously self-healed via microwave heating for a very short time,i.e.,4 s,benefiting from the intense thermal energy generated by PPy under electromagnetic wave radiation.This self-healing ability is also repeatable even after intentionally severe plasma etching,which highlights the great potential to achieve robust and durable EMI shielding applications.Significantly,this approach can be extended to other EMI shielding materials where heat is a triggering stimulus for healing thin protection layers.We envision that this work could provide insights into fabricating EMI shielding materials with durable performance for portable and wearable devices,as well as for human health care. 展开更多
关键词 Electromagnetic interference shielding Superhydrophobic coating Multifunctional textiles SELF-HEALING Conductive polymer
下载PDF
Highly Durable and Fast Response Fabric Strain Sensor for Movement Monitoring Under Extreme Conditions 被引量:3
2
作者 Dongxing Lu Shiqin Liao +4 位作者 Yao Chu Yibing Cai Qufu Wei Kunlin Chen Qingqing Wang 《Advanced Fiber Materials》 SCIE EI 2023年第1期223-234,共12页
The exploration of smart electronic textiles is a common goal to improve people’s quality of life.However,current smart e-textiles still face challenges such as being prone to failure under humid or cold conditions,l... The exploration of smart electronic textiles is a common goal to improve people’s quality of life.However,current smart e-textiles still face challenges such as being prone to failure under humid or cold conditions,lack of washing durability and chemical fragility.Herein,a multifunctional strain sensor with a negative resistance change was developed based on the excellent elasticity of knitted fabrics.A reduced graphene oxide(rGO)conductive fabric was first obtained by electrostatic self-assembly of chitosan(CS).Then a strain sensor was prepared using a dip-coating process to adsorb nanoscale silica dioxide and poly(dimethylsiloxane)(PDMS).A broad working range of 60%,a fast response time(22 ms)and stable cycling durability over 4000 cycles were simultaneously achieved using the prepared sensor.Furthermore,the sensor showed excel-lent superhydrophobicity,photothermal effects and UV protection,as graphene,silica and PDMS acted in synergy.This multifunctional sensor could be mounted on human joints to perform tasks,including activity monitoring,medical rehabili-tation evaluation and gesture recognition,due to its superior electromechanical capabilities.Based on its multiple superior properties,this sensor could be used as winter sportswear for athletes to track their actions without being impacted by water and as a warmer to ensure the wearer's comfort. 展开更多
关键词 Multifunctional strain sensor Fabric surface modification SUPERHYDROPHOBICITY PHOTOTHERMAL Human movement detection
原文传递
Bioinspired Stable Single‑Layer Janus Fabric with Directional Water/Moisture Transport Property for Integrated Personal Cooling Management 被引量:1
3
作者 Yifan Si Shuo Shi +4 位作者 Zhichao Dong Hanbai Wu Fengxin Sun Jieqiong Yang Jinlian Hu 《Advanced Fiber Materials》 SCIE EI 2023年第1期138-153,共16页
Extensive progress has been achieved regarding Janus fabric for directional water transport due to its excellent and feasible personal cooling management ability,which has great significance for energy conservation,po... Extensive progress has been achieved regarding Janus fabric for directional water transport due to its excellent and feasible personal cooling management ability,which has great significance for energy conservation,pollution reduction,and human health.However,existing Janus asymmetric multilayer fabrics for directional water transport are still limited by their com-plicated syntheses and poor stabilities.Inspired by the compositionally graded architecture of leaf cuticles,we propose a single-layer Janus personal cooling management fabric(JPCMF)via a one-step electrospinning method.The JPCMF shows not only great directional bulk water transport ability but also asymmetry moisture(water vapor)transport ability with a high asymmetry factor(1.49),water vapor transmission value(18.5 kg^(-1) m-2 D-1),and water evaporation rate(0.735 g h^(-1)).Importantly,the JPCMF exhibits outstanding durability and stability thanks to a novel electrostatic adsorption-assisted self-adhesion strategy for resisting abrasion,peeling and pulling.With these characteristics,the JPCMF can achieve a 4.0°C personal cooling management effect,better than taht of cotton fabric,on wet skin.The good biocompatibility and nontoxic-ity also endow the JPCMF with the potential to be a self-pumping dressing.Our strategy should facilitate a new method for developing next-generation intelligent multifunctional fabrics. 展开更多
关键词 Cooling management JANUS directional transport ELECTROSPINNING Superwettability BIOINSPIRED
原文传递
Sulfur Vacancies Tune the Charge Distribution of NiCo_(2)S_(4) for Boosting the Energy Density of Stretchable Yarn‑Based Zn Ion Batteries 被引量:1
4
作者 Xinyue Cheng Xu Yang +4 位作者 Yanan Zhang Pengfei Lv Jixing Yang Fenglin Huang Qufu Wei 《Advanced Fiber Materials》 SCIE EI 2023年第2期650-661,共12页
Yarn-based batteries with the dual functions of wearable and energy storage have demonstrated promising potential in wearable energy textiles.However,it is still an urgent problem to construct efficient and flexible e... Yarn-based batteries with the dual functions of wearable and energy storage have demonstrated promising potential in wearable energy textiles.However,it is still an urgent problem to construct efficient and flexible electrodes while optimize the configuration of yarn-based batteries to maintain excellent electrochemical performance under different mechanical deformations.Herein,NiCo_(2)S_(4-x) nanotube arrays with tunable S-vacancies are constructed on carbon yarn(CY)(NiCo_(2)S_(4-x)@CY)by a facile hydrothermal strategy.The aqueous zinc-ion batteries(ZIBs)with NiCo_(2)S_(4-x)@CY as cathodes exhibit exceptional discharge capacity(271.7 mAh g^(-1))and outstanding rate performance(70.9%capacity retention at 5 A g^(-1)),and reveal a maximum power density of 6,059.5 W kg^(-1) and a maximum energy density of 432.2 Wh kg^(-1).It is worth noting that the tunable S-vacancies promote the surface reconfiguration and phase transitions of NiCo_(2)S_(4-x),thereby enhancing the conductivity and charge storage kinetics.The high reactivity and cycling stability of NiCo_(2)S_(4-x)@CY can be related to the discharge products of S-doped NiO and CoO.Furthermore,flexible stretchable yarn-based ZIBs with wrapped yarn structures are constructed and exhibit excellent tensile stability and durability under a variety of mechanical deformations.As a proof of concept,the ZIBs integrated into the fabric show excellent electrochemical performance even in response to simultaneous stretching and bending mechanical deformations.The proposed strategy provides novel inspiration for the development of highly efficient and economical yarn-based ZIBs and wearable energy textiles. 展开更多
关键词 Sulfur vacancies NiCo_(2)S_(4-x)nanotube arrays STRETCHABLE Yarn-based zinc ion batteries Wearable energy textiles
原文传递
Fiber‑Based Materials for Aqueous Zinc Ion Batteries
5
作者 Hao Jia Kaiyu Liu +4 位作者 Yintung Lam Benjamin Tawiah John HXin Wenqi Nie Shou‑xiang Jiang 《Advanced Fiber Materials》 SCIE EI 2023年第1期36-58,共23页
Neutral aqueous zinc ion batteries(ZIBs)have tremendous potential for grid-level energy storage and portable wearable devices.However,certain performance deficiencies of the components have limited the employment of Z... Neutral aqueous zinc ion batteries(ZIBs)have tremendous potential for grid-level energy storage and portable wearable devices.However,certain performance deficiencies of the components have limited the employment of ZIBs in practical applications.Recently,a range of pristine materials and their composites with fiber-based structures have been used to produce more efficient cathodes,anodes,current collectors,and separators for addressing the current challenges in ZIBs.Numerous functional materials can be manufactured into different fiber forms,which can be subsequently converted into various yarn structures,or interwoven into different 2D and 3D fabric-like constructions to attain various electrochemical performances and mechanical flexibility.In this review,we provide an overview of the concepts and principles of fiber-based materials for ZIBs,after which the application of various materials in fiber-based structures are discussed under different domains of ZIB components.Consequently,the current challenges of these materials,fabrication technologies and corre-sponding future development prospects are addressed. 展开更多
关键词 Aqueous zinc ion batteries Fiber-based materials High-performance electrodes Wearable batteries
原文传递
Correction to:Fiber‑Based Materials for Aqueous Zinc Ion Batteries
6
作者 Hao Jia Kaiyu Liu +4 位作者 Yintung Lam Benjamin Tawiah John HXin Wenqi Nie Shou‑xiang Jiang 《Advanced Fiber Materials》 SCIE EI 2023年第1期400-400,共1页
Correction to:Advanced Fiber Materials https://doi.org/10.1007/s42765-022-00215-x The author contribution statement was incorrect and should have read:“Hao Jia,Kaiyu Liu,and Yintung Lam have contributed equally to th... Correction to:Advanced Fiber Materials https://doi.org/10.1007/s42765-022-00215-x The author contribution statement was incorrect and should have read:“Hao Jia,Kaiyu Liu,and Yintung Lam have contributed equally to this work.”The original article has been corrected. 展开更多
关键词 ZINC STATEMENT equally
原文传递
Advanced Flexible Carbon‑Based Current Collector for Zinc Storage 被引量:1
7
作者 Hao Jia Minghui Qiu +5 位作者 Chunxia Tang Hongqi Liu Jinlin Xu Benjamin Tawiah Shou‑xiang Jiang Xiangwu Zhang 《Advanced Fiber Materials》 SCIE EI 2022年第6期1500-1510,共11页
Carbon cloth(CC)-based electrodes have attracted extensive attention for next-generation wearable energy-storage devices due to their excellent electrical conductivity and mechanical flexibility.However,the applicatio... Carbon cloth(CC)-based electrodes have attracted extensive attention for next-generation wearable energy-storage devices due to their excellent electrical conductivity and mechanical flexibility.However,the application of conventional CC-based electrodes for zinc(Zn)storage severely hinders Zn ion transport and induces deleterious Zn dendrite growth,resulting in poor electrochemical reliability.Herein,a novel oxygen plasma-treated carbon cloth(OPCC)is rationally designed as a current collector for flexible hybrid Zn ion supercapacitors(ZISs).The modified interface of OPCC with abundant oxygenated groups enables enhanced electrolyte wettability and uniform superficial electric field distribution.A prolonged working lifespan for Zn electrodeposition is achieved by the OPCC due to the improved interfacial kinetics and homogenized ion gradient.The as-prepared hybrid ZIS also delivers excellent cycling endurance(98.5%capacity retention for 1500 cycles)with outstanding operation stability under various extreme conditions.This facile surface modification strategy provides a new way for developing future flexible electrodes for wearable electronic products. 展开更多
关键词 Zinc ion supercapacitor Carbon cloth Oxygen plasma treatment Interface kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部