The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmissi...The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.展开更多
Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make t...Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make the network layer of mobile WSN be vulnerable to multiple attacks,such as black hole(BH),gray hole(GH),flooding attacks(FA)and rushing attacks(RU).Existing researches on intrusion attacks against mobile WSN,currently,tend to focus on targeted detection of certain types of attacks.The defense methods also have clear directionality and is unable to deal with indeterminate intrusion attacks.Therefore,this work will design an indeterminate intrusion attack oriented detecting and adaptive responding mechanism for mobile WSN.The proposed mechanism first uses a test sliding window(TSW)to improve the detecting accuracy,then constructs parameter models of confidence on attack(COA),network performance degradation(NPD)and adaptive responding behaviors list,finally adaptively responds according to the decision table,so as to improve the universality and flexibility of the detecting and adaptive responding mechanism.The simulation results show that the proposed mechanism can achieve multiple types of intrusion detecting in multiple attack scenarios,and can achieve effective response under low network consumption.展开更多
Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algori...Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification.展开更多
The effect of too much overhead caused by fixed neighborhood state update cycle on the whole network performance has been greatly alleviated by a neighborhood state dynamic update(NSDU) algorithm proposed for MANET in...The effect of too much overhead caused by fixed neighborhood state update cycle on the whole network performance has been greatly alleviated by a neighborhood state dynamic update(NSDU) algorithm proposed for MANET in this paper.A local topology flapping metric(LTFM) has been established based on the changes of link connection to achieve the measurement of stability.The loop control theory has been adopted to establish the control model of the neighborhood state,so as to set up the mapping relationship with the topology change,based on which both the neighborhood state information exchange and the timeout of link with neighbors involved will be adjusted dynamically according to NSDU to ensure that the update cycle would regulate with the network environment in order to achieve the purpose of reducing the control overhead.The simulation results on NS2.34 with different nodes velocities,traffic generating rates and the network node densities shows that adopting NSDU,no matter based on a table-driven protocol or a on-demand one,would reduce the overhead effectively while hardly bring any obvious impacts on metrics of packet successful delivery rate and the average end-to-end delay as well.展开更多
基金Supported by the National Natural Science Foundation of China(No.61771186)Outstanding Youth Project of Heilongjiang Natural Science Foundation(No.YQ2020F012)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)。
文摘The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.
基金Support by the National Natural Science Foundation of China(No.61771186)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125)+1 种基金Outstanding Youth Project of Provincial Natural Science Foundation of China(No.YQ2020F012)Graduate Innovative Research Project of Heilongjiang University(No.YJSCX2020-061HLJU).
文摘Mobile wireless sensor network(WSN)composed by mobile terminals has a dynamic topology and can be widely used in various fields.However,the lack of centralized control,dynamic topology and limited energy supply make the network layer of mobile WSN be vulnerable to multiple attacks,such as black hole(BH),gray hole(GH),flooding attacks(FA)and rushing attacks(RU).Existing researches on intrusion attacks against mobile WSN,currently,tend to focus on targeted detection of certain types of attacks.The defense methods also have clear directionality and is unable to deal with indeterminate intrusion attacks.Therefore,this work will design an indeterminate intrusion attack oriented detecting and adaptive responding mechanism for mobile WSN.The proposed mechanism first uses a test sliding window(TSW)to improve the detecting accuracy,then constructs parameter models of confidence on attack(COA),network performance degradation(NPD)and adaptive responding behaviors list,finally adaptively responds according to the decision table,so as to improve the universality and flexibility of the detecting and adaptive responding mechanism.The simulation results show that the proposed mechanism can achieve multiple types of intrusion detecting in multiple attack scenarios,and can achieve effective response under low network consumption.
基金Support by the National High Technology Research and Development Program of China(No.2012AA120802)National Natural Science Foundation of China(No.61771186)+1 种基金Postdoctoral Research Project of Heilongjiang Province(No.LBH-Q15121)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)
文摘Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification.
基金Sponsored by the Youth Science Fund Project of Heilongjiang University(Grant No.QL201127)the National Natural Science Foundation and Civil Aviation Administration of China(Grant No.61101122)+2 种基金the China Postdoctoral Science Foundation(Grant No.20100471079)the Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-210127)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF. 2010090)
文摘The effect of too much overhead caused by fixed neighborhood state update cycle on the whole network performance has been greatly alleviated by a neighborhood state dynamic update(NSDU) algorithm proposed for MANET in this paper.A local topology flapping metric(LTFM) has been established based on the changes of link connection to achieve the measurement of stability.The loop control theory has been adopted to establish the control model of the neighborhood state,so as to set up the mapping relationship with the topology change,based on which both the neighborhood state information exchange and the timeout of link with neighbors involved will be adjusted dynamically according to NSDU to ensure that the update cycle would regulate with the network environment in order to achieve the purpose of reducing the control overhead.The simulation results on NS2.34 with different nodes velocities,traffic generating rates and the network node densities shows that adopting NSDU,no matter based on a table-driven protocol or a on-demand one,would reduce the overhead effectively while hardly bring any obvious impacts on metrics of packet successful delivery rate and the average end-to-end delay as well.