Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L...Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Exploring highly foldable batteries with no safety hazard is a crucial task for the realization of portable,wearable,and implantable electric devices.Given these concerns,developing solid-state batteries is one of the...Exploring highly foldable batteries with no safety hazard is a crucial task for the realization of portable,wearable,and implantable electric devices.Given these concerns,developing solid-state batteries is one of the most promising routes to achieve this aspiration.Because of the excellent flexibility and processability,polyvinylidene fluoride(PVDF) based electrolytes possess great potential to pack high energy density flexible batteries,however,suffers the various intrinsic shortcomings such as inferior ionic conductivity,a high degree of crystallinity,and lack of reactive groups.Clearing the progress of the present state and concluding the specific challenges faced by PVDF based electrolytes will help to develop PVDF based polymer batteries.In this review,we summarize the recent progress of gel polymer electrolytes and all solid polymer electrolytes based on PVDF.The ion transport mechanisms and preparation methods of PVDF based electrolytes are briefly introduced.Meanwhile,the current design principle and properties of electrolytes are highlighted and systematically discussed.Some peculiar modified strategies performed in lithium-sulfur batteries and lithium-oxygen batteries are also included.Finally,this review describes the challenges and prospects of some solid-state electrolytes to provide strategies for manufacturing high-performance PVDF electrolytes aimed at practical application with flexible requirements.展开更多
Inorganic nanohybrid polyimide (PI) is widely applied in electrical and electronic devices for its outstanding insulating properties. Samples IOOCR and IOONH are made in Dupont. Among them, IOONH is a kind of pure P...Inorganic nanohybrid polyimide (PI) is widely applied in electrical and electronic devices for its outstanding insulating properties. Samples IOOCR and IOONH are made in Dupont. Among them, IOONH is a kind of pure PI films; however, IOOCR is a kind of inorganic nanohybrid PI films with excellent corona-resistance. The nanostructure of PI films is investigated with small-angle x-ray scattering technique and transmission electron microscopy (TEM). The normalized volume fractions of the scatterers in the specimens are obtained with a tangent-by-tangent data analysis for the small-angle x-ray scattering data. The multi-hierarchical scatterers of IOONH can be divided into two dominant components, i.e., the sharp component and the wide component. The sharp component is corresponding to the contribution of PI molecular chains, and the wide component includes the aggregates formed by PI molecular chains and the film has nested dual-fractal characteristics, nevertheless the IOOCR film possesses three types of scale scattering made up of inorganic nanoparticles, molecular chains and aggregates. The present films have multi-fractal structures. The distribution and structure of scattering body of two kinds of PI films are analyzed. The results of SAXS agree well with those of TEM methods.展开更多
Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devi...Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devices is the design and investigation of electrode materials with high energy density and significant cycling stability.Recently,amorphous materials have attracted a lot of attention due to their more defects and structure flexibility,opening up a new way for electrochemical energy storage.In this perspective,we summarize the recent research regarding amorphous materials for electrochemical energy storage.This review covers the advantages and features of amorphous materials,the synthesis strategies to prepare amorphous materials,as well as the application and modification of amorphous electrodes in energy storage fields.Finally,the challenges and prospective remarks for future development in amorphous materials for electrochemical energy storage are concluded.展开更多
Since first synthesized in 2011, MXenes have attracted extensive attention in many scientific fields as a new two-dimensional(2D) material because of the unique physical and chemical properties. Over the past decade, ...Since first synthesized in 2011, MXenes have attracted extensive attention in many scientific fields as a new two-dimensional(2D) material because of the unique physical and chemical properties. Over the past decade, in particular, MXenes have obtained numerous exciting achievements in the field of terahertz applications. In this review, we first briefly introduce the MXene materials, such as the basic structure and main fabrication processes of MXenes. Then, we summarize the recent applications of MXene materials in various terahertz research areas, including terahertz modulation, terahertz absorption, terahertz shielding, terahertz communication, terahertz detection and terahertz generation, in which the representative results are presented. Finally, we give an outlook on the future research directions of MXene materials and their potential applications.展开更多
The advancement of lithium-sulfur(Li-S)batteries is severely retarded by lithium polysulfides(LiPSs)shuttling behavior and sluggish redox kinetics.Herein,the heterogeneous composite with defective Bi_(2)Se_(3−x)nanosh...The advancement of lithium-sulfur(Li-S)batteries is severely retarded by lithium polysulfides(LiPSs)shuttling behavior and sluggish redox kinetics.Herein,the heterogeneous composite with defective Bi_(2)Se_(3−x)nanosheets and porous nitrogen-doped carbon(Bi_(2)Se_(3−x)/NC)is prepared by selenizing bismuth metal-organic frameworks as a multifunctional sulfur host.The highly efficient immobilization-conversion on LiPSs is realized by the synergistic effect of structure construction strategy and defect engineering.It is found that Bi_(2)Se_(3−x)with the suitable amount of selenium vacancies achieves the best electrochemical performance due to the advantages of its structure and composition.These results confirm the intrinsic correlation between defects and catalysis,which are revealed by computational and experimental studies.Due to these superiorities,the developed sulfur electrodes exhibited admirable stability and a fairly lower capacity decay rate of approximately 0.0278%per cycle over 1,000 cycles at a 3 C rate.Even at the high sulfur loading of 6.2 mg·cm^(−2),the cathode still demonstrates a high discharge capacity of 455 mAh·g^(−1)at 1 C.This work may enlighten the development of mechanism investigation and design principles regarding sulfur catalysis toward high-performance Li-S batteries.展开更多
Nitrogen reduction reaction(NRR)under ambient conditions is always a long-standing challenge in science,due to the extreme difficulty in breaking the strong N≡N triple bond.The key to resolving this issue undoubtedly...Nitrogen reduction reaction(NRR)under ambient conditions is always a long-standing challenge in science,due to the extreme difficulty in breaking the strong N≡N triple bond.The key to resolving this issue undoubtedly lies in searching superior catalysts to efficiently activate and hydrogenate the stable nitrogen molecules.We herein evaluate the feasibility of WP_(2) for N2 activation and reduction,and first demonstrate WP_(2) with an impressive ammonia yield rate of 7.13 lg h^(-1)cm^(-2),representing a promising W-based catalyst for NRR.DFT analysis further reveals that the NRR catalysis on WP_(2) proceeds in a distal reaction pathway,and the exceptional NRR activity is originated from superior surface electron energy level matching between WP_(2) and NRR potential which facilitates the interfacial proton-coupled electron transfer dynamics.The successfully unraveling the intrinsic catalytic mechanism of WP_(2) for NRR could offer a powerful platform to manipulate the NRR activity by tuning the electron energy levels.展开更多
The basal planes of transition metal dichalcogenides are basically inert for catalysis due to the absence of adsorption and activation sites,which substantially limit their catalytic application.Herein,a facile strate...The basal planes of transition metal dichalcogenides are basically inert for catalysis due to the absence of adsorption and activation sites,which substantially limit their catalytic application.Herein,a facile strategy to activate the basal plane of WS_(2) for hydrogen evolution reaction(HER)catalysis by phosphorous-induced electron density modulation is demonstrated.The optimized P doped WS_(2)(P-WS_(2))nanowires arrays deliver a low overpotential of 88 mV at 10 mA·cm^(-2)with a Tafel slope of 62 mV·dec^(-1)for HER,which is substantially better than the pristine counterpart.X-ray photoelectron spectroscopy confirms the surface electron densities of WS_(2) have been availably manipulated by P doping.Moreover,density functional theory(DFT)studies further prove P doping can redistribute the density of states(DOS)around EF,which endow the inert basal plane of PWS_(2) with edge-like catalytic activity toward hydrogen evolution catalysis.Our work offers a facile and effective approach to modulate the catalytic surface of WS_(2) toward highly efficient HER catalysis.展开更多
The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for th...The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.展开更多
Effectively trapping lithium polysulfide species and accelerating the reaction conversion kinetics are the main strategies to improve the performance of lithium-sulfur(Li-S)batteries.Since the researchers found in 201...Effectively trapping lithium polysulfide species and accelerating the reaction conversion kinetics are the main strategies to improve the performance of lithium-sulfur(Li-S)batteries.Since the researchers found in 2014 that two-dimensional(2D)phosphorene nanosheets could be exfoliated from the bulk black phosphorus,numerous researches have been devoted to exploring the phosphorene with unique properties for the application in Li-S batteries In this review.we summarize the recent theoretical and experimental progress of phosphorene for Li-S batteries.Be-sides,we also introduce the relationship between the interfacial interaction on phosphorene and the performance enhancement of Li-S batteries.Furthermore,future challenges and remaining opportunities for phosphorene in Li-s batteries are finally discussed.展开更多
Metal-ion(Li-,Na-,Zn-,K-,Mg-,and Al-ion)batteries(MIBs)play an important role in realizing the goals of“emission peak and carbon neutralization”because of their green production techniques,lower pollution,high volta...Metal-ion(Li-,Na-,Zn-,K-,Mg-,and Al-ion)batteries(MIBs)play an important role in realizing the goals of“emission peak and carbon neutralization”because of their green production techniques,lower pollution,high voltage,and large energy density.Carbon-based materials are indispensable for developing MIBs and are widely adopted as active or auxiliary materials in the anodes and cathodes.For example,carbon-based materials,includ-ing graphite,Si/C and hard carbon,have been used as anode materials for Li-and Na-ion batteries.Carbon can also be used as a conductive coating for cathodes,such as in LiFePO 4/C,to achieve better performance.In addition,as new high-valence MIBs(Zn-,Al-,and Mg-ion)have emerged,a growing number of novel carbon-based mate-rials have been utilized to construct high-performance MIBs.Herein,we discuss the recent development trends in advanced carbon-based materials for MIBs.The impact of the structure properties of advanced carbon-based materials on energy storage is addressed,and a perspective on their development is also proposed.展开更多
基金supported by the National Natural Science Foundation of China(52122702,52277215)the Natural Science Foundation of Heilongjiang Province of China(JQ2021E005)。
文摘Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金supported by the National Natural Science Foundation of China(Grant No.51502063)the Project for guiding local Science and Technology Development by Central Government of Chin(ZY18C04)+1 种基金the Fundamental Research Foundation for Universities of Heilongjiang Province(LGYC2018JQ006)the Science Funds for Young Innovative Talents of HUST(No.201505).
文摘Exploring highly foldable batteries with no safety hazard is a crucial task for the realization of portable,wearable,and implantable electric devices.Given these concerns,developing solid-state batteries is one of the most promising routes to achieve this aspiration.Because of the excellent flexibility and processability,polyvinylidene fluoride(PVDF) based electrolytes possess great potential to pack high energy density flexible batteries,however,suffers the various intrinsic shortcomings such as inferior ionic conductivity,a high degree of crystallinity,and lack of reactive groups.Clearing the progress of the present state and concluding the specific challenges faced by PVDF based electrolytes will help to develop PVDF based polymer batteries.In this review,we summarize the recent progress of gel polymer electrolytes and all solid polymer electrolytes based on PVDF.The ion transport mechanisms and preparation methods of PVDF based electrolytes are briefly introduced.Meanwhile,the current design principle and properties of electrolytes are highlighted and systematically discussed.Some peculiar modified strategies performed in lithium-sulfur batteries and lithium-oxygen batteries are also included.Finally,this review describes the challenges and prospects of some solid-state electrolytes to provide strategies for manufacturing high-performance PVDF electrolytes aimed at practical application with flexible requirements.
基金Supported by the National Natural Science Foundation of China under Grant No 50677009.
文摘Inorganic nanohybrid polyimide (PI) is widely applied in electrical and electronic devices for its outstanding insulating properties. Samples IOOCR and IOONH are made in Dupont. Among them, IOONH is a kind of pure PI films; however, IOOCR is a kind of inorganic nanohybrid PI films with excellent corona-resistance. The nanostructure of PI films is investigated with small-angle x-ray scattering technique and transmission electron microscopy (TEM). The normalized volume fractions of the scatterers in the specimens are obtained with a tangent-by-tangent data analysis for the small-angle x-ray scattering data. The multi-hierarchical scatterers of IOONH can be divided into two dominant components, i.e., the sharp component and the wide component. The sharp component is corresponding to the contribution of PI molecular chains, and the wide component includes the aggregates formed by PI molecular chains and the film has nested dual-fractal characteristics, nevertheless the IOOCR film possesses three types of scale scattering made up of inorganic nanoparticles, molecular chains and aggregates. The present films have multi-fractal structures. The distribution and structure of scattering body of two kinds of PI films are analyzed. The results of SAXS agree well with those of TEM methods.
基金supported by National Natural Science Foundation of China(Grant Nos.52122702 and 52277215)Natural Science Foundation of Heilongjiang Province of China(No.JQ2021E005).
文摘Electrochemical batteries and supercapacitors are considered ideal rechargeable technologies for next-generation energy storage systems.The key to further commercial applications of electrochemical energy storage devices is the design and investigation of electrode materials with high energy density and significant cycling stability.Recently,amorphous materials have attracted a lot of attention due to their more defects and structure flexibility,opening up a new way for electrochemical energy storage.In this perspective,we summarize the recent research regarding amorphous materials for electrochemical energy storage.This review covers the advantages and features of amorphous materials,the synthesis strategies to prepare amorphous materials,as well as the application and modification of amorphous electrodes in energy storage fields.Finally,the challenges and prospective remarks for future development in amorphous materials for electrochemical energy storage are concluded.
基金supported by the National Natural Science Foundation of China (No.62075052)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Nos.JCKYS2020603C009 and 6142905212711)+1 种基金the Natural Science Foundation of Heilongjiang Province (No.LH2019F022)the Project of Innovative and Entrepreneurship Training Program for College Students in Heilongjiang Province (No.201810214105)。
文摘Since first synthesized in 2011, MXenes have attracted extensive attention in many scientific fields as a new two-dimensional(2D) material because of the unique physical and chemical properties. Over the past decade, in particular, MXenes have obtained numerous exciting achievements in the field of terahertz applications. In this review, we first briefly introduce the MXene materials, such as the basic structure and main fabrication processes of MXenes. Then, we summarize the recent applications of MXene materials in various terahertz research areas, including terahertz modulation, terahertz absorption, terahertz shielding, terahertz communication, terahertz detection and terahertz generation, in which the representative results are presented. Finally, we give an outlook on the future research directions of MXene materials and their potential applications.
基金the National Natural Science Foundation of China(No.52122702)the Natural Science Foundation of Heilongjiang Province of China(No.JQ2021E005)the Fundamental Research Foundation for Universities of Heilongjiang Province(No.LGYC2018JQ006).
文摘The advancement of lithium-sulfur(Li-S)batteries is severely retarded by lithium polysulfides(LiPSs)shuttling behavior and sluggish redox kinetics.Herein,the heterogeneous composite with defective Bi_(2)Se_(3−x)nanosheets and porous nitrogen-doped carbon(Bi_(2)Se_(3−x)/NC)is prepared by selenizing bismuth metal-organic frameworks as a multifunctional sulfur host.The highly efficient immobilization-conversion on LiPSs is realized by the synergistic effect of structure construction strategy and defect engineering.It is found that Bi_(2)Se_(3−x)with the suitable amount of selenium vacancies achieves the best electrochemical performance due to the advantages of its structure and composition.These results confirm the intrinsic correlation between defects and catalysis,which are revealed by computational and experimental studies.Due to these superiorities,the developed sulfur electrodes exhibited admirable stability and a fairly lower capacity decay rate of approximately 0.0278%per cycle over 1,000 cycles at a 3 C rate.Even at the high sulfur loading of 6.2 mg·cm^(−2),the cathode still demonstrates a high discharge capacity of 455 mAh·g^(−1)at 1 C.This work may enlighten the development of mechanism investigation and design principles regarding sulfur catalysis toward high-performance Li-S batteries.
基金financial support from the National Natural Science Foundation of China(Nos.21771169,11804325,11722543,11875258,11505187)the National Key Research and Development Program of China(2017YFA0206703)+3 种基金Anhui Provincial Natural Science Foundation(BJ2060190077)USTC start-up fundingRecruitment Program of Global Expertthe Fundamental Research Funds for the Central Universities(WK2060190074,WK2060190081,WK2310000066)。
文摘Nitrogen reduction reaction(NRR)under ambient conditions is always a long-standing challenge in science,due to the extreme difficulty in breaking the strong N≡N triple bond.The key to resolving this issue undoubtedly lies in searching superior catalysts to efficiently activate and hydrogenate the stable nitrogen molecules.We herein evaluate the feasibility of WP_(2) for N2 activation and reduction,and first demonstrate WP_(2) with an impressive ammonia yield rate of 7.13 lg h^(-1)cm^(-2),representing a promising W-based catalyst for NRR.DFT analysis further reveals that the NRR catalysis on WP_(2) proceeds in a distal reaction pathway,and the exceptional NRR activity is originated from superior surface electron energy level matching between WP_(2) and NRR potential which facilitates the interfacial proton-coupled electron transfer dynamics.The successfully unraveling the intrinsic catalytic mechanism of WP_(2) for NRR could offer a powerful platform to manipulate the NRR activity by tuning the electron energy levels.
基金This work is supported by the National Natural Science Foundation of China(No.52122702)Natural Science Foundation of Heilongjiang Province of China(No.JQ2021E005)Fundamental Research Foundation for Universities of Heilongjiang Province(No.LGYC2018JQ006).
文摘The basal planes of transition metal dichalcogenides are basically inert for catalysis due to the absence of adsorption and activation sites,which substantially limit their catalytic application.Herein,a facile strategy to activate the basal plane of WS_(2) for hydrogen evolution reaction(HER)catalysis by phosphorous-induced electron density modulation is demonstrated.The optimized P doped WS_(2)(P-WS_(2))nanowires arrays deliver a low overpotential of 88 mV at 10 mA·cm^(-2)with a Tafel slope of 62 mV·dec^(-1)for HER,which is substantially better than the pristine counterpart.X-ray photoelectron spectroscopy confirms the surface electron densities of WS_(2) have been availably manipulated by P doping.Moreover,density functional theory(DFT)studies further prove P doping can redistribute the density of states(DOS)around EF,which endow the inert basal plane of PWS_(2) with edge-like catalytic activity toward hydrogen evolution catalysis.Our work offers a facile and effective approach to modulate the catalytic surface of WS_(2) toward highly efficient HER catalysis.
基金National Natural Science Foundation of China(NSFC)(61378029,61775053,51572053,51777046)Science Foundation for Outstanding Youths of Heilongjiang Province(JC2016016)Science Foundation for Youths of Heilongjiang Province(QC2017078)
文摘The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.
基金Supported by the National Natural Science Foundation of China(No.11722543)the National Key Research and Develop-ment Program of China(No.2017YFA0206703)the Anhui Provincial Natural Science Foundation,China(No.18080850B35).
文摘Effectively trapping lithium polysulfide species and accelerating the reaction conversion kinetics are the main strategies to improve the performance of lithium-sulfur(Li-S)batteries.Since the researchers found in 2014 that two-dimensional(2D)phosphorene nanosheets could be exfoliated from the bulk black phosphorus,numerous researches have been devoted to exploring the phosphorene with unique properties for the application in Li-S batteries In this review.we summarize the recent theoretical and experimental progress of phosphorene for Li-S batteries.Be-sides,we also introduce the relationship between the interfacial interaction on phosphorene and the performance enhancement of Li-S batteries.Furthermore,future challenges and remaining opportunities for phosphorene in Li-s batteries are finally discussed.
基金This work was supported by the Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province(Grant No.LR20E020001)the National Natural Science Foundation of China(Grant Nos.52073252,52002052,U20A20253,21972127,22279116)+5 种基金the Science and Technology Department of Zhejiang Province(Grant No.2023C01231)the Key Research and Development Project of Sci-ence and Technology Department of Sichuan Province(Grant no.2022YFSY0004)the Natural Science Foundation of Zhejiang Province(Grant Nos.LY21E040001,LD22E020006,and LY21E020005)the Foundation of the State Key Laboratory of Coal Conversion(Grant No.J20-21-909)the State Key Laboratory of Silicon Materials(Grant No.SKL2021-12)the Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology),Ministry of Education(Grant No.KFM 202202).
文摘Metal-ion(Li-,Na-,Zn-,K-,Mg-,and Al-ion)batteries(MIBs)play an important role in realizing the goals of“emission peak and carbon neutralization”because of their green production techniques,lower pollution,high voltage,and large energy density.Carbon-based materials are indispensable for developing MIBs and are widely adopted as active or auxiliary materials in the anodes and cathodes.For example,carbon-based materials,includ-ing graphite,Si/C and hard carbon,have been used as anode materials for Li-and Na-ion batteries.Carbon can also be used as a conductive coating for cathodes,such as in LiFePO 4/C,to achieve better performance.In addition,as new high-valence MIBs(Zn-,Al-,and Mg-ion)have emerged,a growing number of novel carbon-based mate-rials have been utilized to construct high-performance MIBs.Herein,we discuss the recent development trends in advanced carbon-based materials for MIBs.The impact of the structure properties of advanced carbon-based materials on energy storage is addressed,and a perspective on their development is also proposed.