期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor 被引量:4
1
作者 K.Ramachandran Gokila Subburam +8 位作者 Xian-Hu Liu Ming-Gang Huang Chun Xu Dickon H.L.Ng Ying-Xue Cui Guo-Chun Li Jing-Xia Qiu Chuan Wang Jia-Biao Lian 《Rare Metals》 SCIE EI CAS CSCD 2022年第7期2481-2490,共10页
Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous... Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous carbon nanofoams(NPCNs-600-N)for sodium-ion capacitors(SICs).NPCNs-600-N have a highly porous framework,extended interlayer spacing(0.41 nm),and lots of surface functional groups.Accordingly,NPCNs-600-N achieves a high reversible capacity(301 mAh·g^(-1)at 0.05 A·g^(-1)),superior rate capability(112 mAh·g^(-1)at 5.00 A·g^(-1)),and ultra-stable cyclability.The excellent rate and cycling performance originate from the abundant active sites and porous architecture of NPCNs-600-N.Further-more,SICs device is constructed by employing the NPCNs-600-N as the battery-like anode and commercial superconductive carbon black as the capacitive cathode,which delivers high energy/power densities of 92 Wh·kg^(-1)/15984 W·kg^(-1)with a remarkable cyclability(93%reten-tion over 5000 cycles at 1.00 A·g^(-1)).The methodology of the work enables the simultaneous tuning of the porous architectures and surface function groups of carbon for high-performance SICs. 展开更多
关键词 Carbon nanofoams NITROGEN-DOPING Porous structure Kinetics analysis Sodium-ion capacitors
原文传递
Liquid-liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance
2
作者 Ming Chen Huiyan Jiao +3 位作者 Jun Li Zhibin Wang Feng He Yang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期281-289,共9页
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o... In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow. 展开更多
关键词 Flow pattern Mass transfer Microchannels Two-phase flow
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部