The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)...The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.展开更多
Although the advent of antibiotics has significantly improved the quality of life of infected patients,bacterial infections continue to pose a serious threat to public health[1,2].According to a recent report,within t...Although the advent of antibiotics has significantly improved the quality of life of infected patients,bacterial infections continue to pose a serious threat to public health[1,2].According to a recent report,within the next 30 years,bacterial infections are projected to surpass cancer in terms of lethality rates,resulting in an alarming 10 million deaths annually by 2050 due to the development of bacterial resistance[3].Moreover,the formation of bacterial biofilms hampers the penetration of antibacterial agents and inhibits the host immune response,making biofilm infections extremely challenging to treat[4-7].Hence,the development of innovative antimicrobial biofilm therapeutics is imperative.展开更多
Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas...Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas- mon resonance peaks, respectively, at 525, 575, and 775 nrn, are introduced into the hole extraction layer poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic ceils. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl- C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA.cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the local- ized surface plasmon resonanceand scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection.展开更多
π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance a...π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.展开更多
Flexible and wearable pressure sensors attached to human skin are effective and convenient in accurate and real-time tracking of various physiological signals for disease diagnosis and health assessment.Conventional f...Flexible and wearable pressure sensors attached to human skin are effective and convenient in accurate and real-time tracking of various physiological signals for disease diagnosis and health assessment.Conventional flexible pressure sensors are constructed using compressible dielectric or conductive layers,which are electrically sensitive to external mechanical stimulation.However,saturated deformation under large compression significantly restrains the detection range and sensitivity of such sensors.Here,we report a novel type of flexible pressure sensor to overcome the compression saturation of the sensing layer by softstrain ffect,enabling an utra-high sensitivity of~636 kPa^(-1) and a wide detection range from 0.1 kPa to 56 kPa.In addition,the cyclic loading-unloading test reveals the excellent stability of the sensor,which maintains its signal detection after 10.000 cycles of 10 kPa compression.The sensor is capable of monitoring arterial pulse waves from both deep tissue and distal parts,such as digital arteries and dorsal pedal arteries,which can be used for blood pressure estimation by pulse transit time at the same artery branch.展开更多
Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an ag...Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an aggregation-induced delayed ECL(AIDECL)active organic dot(OD)containing a benzophenone acceptor and dimethylacridine donor is reported,which shows high ECL efficiency via reverse intersystem crossing(RISC)of non-emissive 3R*to emissive 1R*,overcoming the spin-forbidden radiative decay from 3R*.By introducing dual donor-acceptor pairs into luminophores,it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions,and multiple spin-up conversion channels could be activated.As a consequence,the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD.Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC.This work represents a major step towards purely organic,high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.展开更多
Investigation into the structural and magnetic properties of organic molecules at cryogenic temperature is beneficial for reducing molec-ular vibration and stabilizing magnetization,and is of great im-portance for con...Investigation into the structural and magnetic properties of organic molecules at cryogenic temperature is beneficial for reducing molec-ular vibration and stabilizing magnetization,and is of great im-portance for constructing novel spintronics devices of better perfor-mance and scaling the device size down to nanoscale.In order to explore the possibility of fabricating molecule-based memory chips of ultrahigh density,two-dimensional close-packed molecular arrays with carboxylic acid molecules were constructed in the current work and the magnetic properties in a low-temperature scanning tunnel-ing microscope were also investigated.The results demonstrated that each nonmagnetic molecule can be controllably and independently switched into a stable spin-carrying state at 4 K by applying a voltage pulse with atomic resolution.Benefiting from the small size of a single molecule as the basic storage bit,the two-dimensional molecular ar-rays allowing controllable electrical manipulations on each molecule can behave as a platform of memory chip with an ultrahigh storage density of∼320 terabytes(Tb)(or∼2500 terabits)per square inch.This work highlights the potential and advantage of employing or-ganic molecules in developing future cryogenic information storage techniques and devices at nanoscale.展开更多
Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting t...Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting tumor cells from damage caused by common treatments.High concentration of hydrogen peroxide(H2O2),one of the hallmarks of TME,has been recognized as a double-edged sword,posing both challenges,and opportunities for cancer therapy.The promising perspectives,strategies,and approaches for enhanced tumor therapies,including PDT,have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine.In this review,we outline the latest advances in H2O2-responsive materials,including organic and inorganic materials for enhanced PDT.Finally,the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned.展开更多
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible str...With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.展开更多
Precisely optimizing the morphology of functional hybrid polymeric systems is crucial to improve its photophysical property and further extend their optoelectronic applications. The physic-chemical property of polymer...Precisely optimizing the morphology of functional hybrid polymeric systems is crucial to improve its photophysical property and further extend their optoelectronic applications. The physic-chemical property of polymeric matrix in electrospinning (ES) processing is a key factor to dominate the condensed structure of these hybrid microstructures and further improve its functionality. Herein, we set a flexible poly(ethylene oxide) (PEO) as the matrix to obtain a series of polydiarylfluorenes (including PHDPF, PODPF and PNDPF) electrospun hybrid microfibers with a robust deep-blue emission. Significantly different from the rough morphology of their poly(N-vinylcarbazole) (PVK) ES hybrid fibers, polydiarylfluorenes/PEO ES fibers showed a smooth morphology and small size with a diameter of 1∼2 µm. Besides, there is a relatively weak phase separation under rapid solvent evaporation during the ES processing, associated with the hydrogen-bonded-assisted network of PEO in ES fibers. These relative “homogeneous” ES fibers present efficient deep-blue emission (PLQY>50%), due to weak interchain aggregation. More interestingly, low fraction of planar (β) conformation appears in the uniform PODPF/PEO ES fibers, induced by the external traction force in ES processing. Meanwhile, PNDPF/PEO ES fibers present a highest sensitivity than those of other ES fibers, associated with the smallest diameter and large surface area. Finally, compared to PODPF/PVK fibers and PODPF/PEO amorphous ES fibers, PODPF/PEO ES fibers obtained from DCE solution exhibit an excellent quenching behavior toward a saturated DNT vapor, mainly due to the synergistic effect of small size, weak separation, β-conformation formation and high deep-blue emission efficiency.展开更多
The rapid in situ inhibition of bacterial contamination and subsequent infection without inducing drug resistance is highly vital for the successful implantation and long-term service of titanium(Ti)-based orthopedic ...The rapid in situ inhibition of bacterial contamination and subsequent infection without inducing drug resistance is highly vital for the successful implantation and long-term service of titanium(Ti)-based orthopedic implants.However,the instability and potential cytotoxicity of current coatings have deterred their clinical practice.In this study,anodic oxidized titania nanotubes(TNT)were modified with antibacterial polyhexamethylene guanidine(PG)with the assistance of 3,4-dihydroxyphenylacetic acid.Interestingly,the prepared TNT-PG coating exhibited superior in vitro antibacterial activity than flat Ti-PG coating and effectively killed typical pathogens such as Escherichia coli and superbug methicillinresistant Staphylococcus aureus with above 4-log reduction(>99.99%killed)in only 5 min.TNT-PG coating also exerted excellent hemocompatibility with red blood cells and nontoxicity toward mouse pre-osteoblasts(MC3 T3-E1)in 1 week of coculture.In addition,the efficient in vivo anti-infective property of this coating was observed in a rat subcutaneous infection model.More importantly,TNT-PG coating improved the expression of alkaline phosphatase and enhanced the extracellular matrix mineralization of pre-osteoblasts,denoting its osteoinductive capacity.This versatile TNT-PG coating with excellent antibacterial activity and biocompatibility could be a promising candidate for advanced orthopedic implant applications.展开更多
The intrinsically rigid and limited strain of most conjugated polymers has encouraged us to optimize the extensible properties of conjugated polymers.Herein,learning from the hydrogen bonds in glucose,which were facil...The intrinsically rigid and limited strain of most conjugated polymers has encouraged us to optimize the extensible properties of conjugated polymers.Herein,learning from the hydrogen bonds in glucose,which were facilitated to the toughness enhancement of cellulose,we introduced interchain hydrogen bonds to polydiarylfluorene by amide-containing side chains.Through tuning the copolymerization ratio,we systematically investigated their influence on the hierarchical condensed structures,rheology behavior,tensile performances,and optoelectronic properties of conjugated polymers.Compared to the reference copolymers with a low ratio of amide units,copolymers with 30%and 40%amide units present a feature of the shearthinning process that resembled the non-Newtonian fluid,which was enabled by the interchain dynamic hydrogen bonds.Besides,we developed a practical and universal method for measuring the intrinsic mechanical properties of conjugated polymers.We demonstrated the significant impact of hydrogen bonds in solution gelation,material crystallization,and thin film stretchability.Impressively,the breaking elongation for P4 was even up to~30%,which confirmed the partially enhanced film ductility and toughness due to the increased amide groups.Furthermore,polymer light-emitting devices(PLEDs)based on these copolymers presented comparable performances and stable electroluminescence(EL).Thin films of these copolymers also exhibited random laser emission with the threshold as low as 0.52μJ/cm^(2),suggesting the wide prospective application in the field of flexible optoelectronic devices.展开更多
Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular...Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.展开更多
A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emissi...A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emission properties.The supramolecular tunable PPFOH aggregation in PVK matrix endows the complex with a smart energy transfer behavior to obtain the multi-color emissions.In stark contrast to PVK fibers,the emission color of PPFOH/PVK fibers with an efficient dispersion of PPFOH fluorophores at a proper dope ratio can be tuned in a wide spectrum of blue(0.1%),sky blue(0.5%),nearly white(1%),cyan(2%),green(5%)and yellow(10%).Besides,conductive behaviors of the microfiber were demonstrated in accompany with the increment of the doping ratio of PPFOH to PVK.Successful fabrication of polymer light-emitting diode(PLED)based on the blended electrospun fiber provided a further evidence of its excellent electrical property for potential applications in optoelectronic devices.展开更多
The low-cost and scalable printable mesoporous perovskite solar cells(p-MPSCs) face significant challenges in regulating perovskite crystal growth due to their nanoscale mesoporous scaffold structure, which limits the...The low-cost and scalable printable mesoporous perovskite solar cells(p-MPSCs) face significant challenges in regulating perovskite crystal growth due to their nanoscale mesoporous scaffold structure, which limits the improvement of device power conversion efficiency(PCE). In particular, the most commonly used solvents, N,N-dimethylformamide(DMF) and dimethyl sulfoxide(DMSO), have a single chemical interaction with the precursor components and high volatility, which is insufficient to self-regulate the perovskite crystallization process, leading to explosive nucleation and limited growth within mesoporous scaffolds. Here, we report a mixed solvent system composed of methylamine formaldehyde(MAFa)-based ionic liquid and acetonitrile(ACN) with the strong C=O–Pb coordination and N–H···I hydrogen bonding with perovskite components. We found that the mixed solvent system is beneficial for the precursor solution to homogeneously penetrate into the mesoporous scaffold,and the strong C=O–Pb coordination and N–H···I hydrogen bonding interaction can promote the oriented growth of perovskite crystals. This synergistic effect increased the PCE of the p-MPSCs from 17.50% to 19.21%, which is one of the highest records for p-MPSC in recent years. Additionally, the devices exhibit positive environmental stability, retaining over 90% of the original PCE after 1,200 h of aging under AM 1.5 illumination conditions at 55 ℃ and 55% humidity.展开更多
Fabrication of multifunctional catalysts has always been the pursuit of synthetic chemists due to their efficiency,cost-effectiveness,and environmental friendliness.However,it is difficult to control multi-step reacti...Fabrication of multifunctional catalysts has always been the pursuit of synthetic chemists due to their efficiency,cost-effectiveness,and environmental friendliness.However,it is difficult to control multi-step reactions in one-pot,especially the spatial compartmentalization of incompatible active sites.Herein,we constructed metal-organic framework(MOF)composites which regulate the location distribution of metal nanoparticles according to the reaction path and coupled with the diffusion of substrates to achieve tandem reaction.The designed UiO-66-Pt-Au catalyst showed good activity and selectivity in hydrosilylation-hydrogenation tandem reaction,because the uniform microporous structures can control the diffusion path of reactants and intermediates,and Pt and Au nanoparticles were arranged in core-shell spatial distribution in UiO-66.By contrast,the low selectivity of catalysts with random deposition and physical mixture demonstrated the significance of artificial control to the spatial compartmentalization of active sites in tandem catalytic reactions,which provides a powerful approach for designing high-performance and multifunctional heterogeneous catalysts.展开更多
In organic solar cells (OSCs), developing high-performing easily synthesized photoactive materials is essential for pursuing cost- effective balance. Herein, we have designed and synthesized a pair of wide-band-gap po...In organic solar cells (OSCs), developing high-performing easily synthesized photoactive materials is essential for pursuing cost- effective balance. Herein, we have designed and synthesized a pair of wide-band-gap polymers (PBDE4T-0F and PBDE4T-2F), using the low synthesis cost dicarboxylic ester-substituted quaterthiophene as the building block. Despite the minor change of molecular structure for polymer PBDE4T-xF, the fluorine substituent in polymer PBDE4T-2F greatly enhances its interchain aggregation. The higher aggregation tendency of ester-modified polymer in solution is beneficial for reducing both the aggregate size and π-π stacking distance of blend film, which contribute to the highly efficient exciton dissociation and symmetric charge transport. An impressive power-conversion efficiency (PCE) of 16.1% is achieved for the PBDE4T-2F:BTP-eC9-based device, while its counterpart only delivers a PCE of 5.8% with distinctly lower short-circuit current density (J_(sc)) and fill factor. Notably, the aggregation effect of donor polymer has also been found to be associated with the energy level shifts, and thus the variation of charge transfer energy and voltage losses for blend system. The results suggest that simultaneously reduced voltage loss and increased J_(sc) can be expected by further finely tuning the aggregation behavior of the ester-modified oligothiophene-based donor polymer.展开更多
Chemical and biological sensing play important roles in healthcare,environmental science,food-safety tests,and medical applications.Flexible organic electrochemical transistors(OECTs)have shown great promise in the fi...Chemical and biological sensing play important roles in healthcare,environmental science,food-safety tests,and medical applications.Flexible organic electrochemical transistors(OECTs)have shown great promise in the field of chemical and biological sensing,owing to their superior sensitivity,high biocompatibility,low cost,and light weight.Herein,we summarize recent progress in the fabrication of flexible OECTs and their applications in chemical and biological sensing.We start with a brief introduction to the working principle,configuration,and sensing mechanism of the flexible OECT-based sensors.Then,we focus on the fabrication of flexible OECT-based sensors,including material selection and structural engineering of the components in OECTs:the substrate,electrodes,electrolyte,and channel.Particularly,the gate modification is discussed extensively.Then,the applications of OECT-based sensors in chemical and biological sensing are reviewed in detail.Especially,the array-based and integrated OECT sensors are also introduced.Finally,we present the conclusions and remaining challenges in the field of flexible OECT-based sensing.Our timely review will deepen the understanding of the flexible OECT-based sensors and promote the further development of the fast-growing field of flexible sensing.展开更多
Impurity doping not only provides a fundamental approach to impart unique electronic,magnetic and optical properties to target nanomaterials,but also has critical influence on nucleation and growth of many functional ...Impurity doping not only provides a fundamental approach to impart unique electronic,magnetic and optical properties to target nanomaterials,but also has critical influence on nucleation and growth of many functional nanocrystals.In the current study,Y^(3+)and Sc^(3+)were adopted to tune the shape,size,and upconversion luminescence properties of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er samples,respectively.When Y^(3+)doping concentration was lower than 10 mol%,the size and shape of Na_(3)ScF_(6):Yb/Er(18/2)nanoparticles gradually changed from~18 nm rhombus to 36 nm spheres.Subsequently,the coexistence of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er nanoparticles was observed during 20 mol%-50 mol%Y^(3+)doping,and finally NaYF_(4):Yb/Er nanoparticles became the only product at>60 mol%Y^(3+)doping where the role of Sc^(3+)turned into dopant and the size of nanocrystals decreased from~30 to 20 nm gradually.Both Y^(3+)and Sc^(3+)ions doping could enhance the upconversion luminescence intensity of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er samples,for which possible mechanism was proposed from the perspective of crystal structure.Finally,the upconversion luminescence details were disclosed.展开更多
Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubilit...Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubility of non-halide lead sources is highly limited by traditional solvents due to the chemical interaction limitation.Here,we report a series of non-halide lead sources(e.g.,lead acetate(PbAc_(2)),lead sulfate(PbSO_(4)),lead carbonate(PbCO_(3)),lead nitrate(Pb(NO_(3))_(2)),lead formate(Pb(HCOO)_(2))and lead oxalate(PbC_(2)O_(4)))can be well dissolved in an ionic liquid solvent methylammonium acetate(MAAc).We found that the universal strong coordination of C=O with lead ion(Pb^(2+))and the formation of hydrogen bonds were observed in perovskite precursor solution.This allows the dissolution of non-halide lead salts and is able to produce perovskite film with smooth,compact,and full coverage crystal grain.The power conversion efficiency(PCE)of 14.48%,19.21%,and 20.13%in PSCs based on PbSO_(4),PbAc_(2),and PbCO_(3) was achieved,respectively,in the absence of any additives and passivation agents.This study demonstrates the universality of ionic liquid for the preparation of PSCs based on nonhalides lead sources.展开更多
基金financial support from National Natural Science Foundation of China(No.21875106,21850410456,21875052,51972172)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)Jiangsu Excellent Postdoctoral Program
文摘The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20230117)the Natural Science Research Project of Nanjing Polytechnic Institute(NJPI-2023-04).
文摘Although the advent of antibiotics has significantly improved the quality of life of infected patients,bacterial infections continue to pose a serious threat to public health[1,2].According to a recent report,within the next 30 years,bacterial infections are projected to surpass cancer in terms of lethality rates,resulting in an alarming 10 million deaths annually by 2050 due to the development of bacterial resistance[3].Moreover,the formation of bacterial biofilms hampers the penetration of antibacterial agents and inhibits the host immune response,making biofilm infections extremely challenging to treat[4-7].Hence,the development of innovative antimicrobial biofilm therapeutics is imperative.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB932202 and 2012CB933301)the National Natural Science Foundation of China(Grant Nos.61274065,51173081,61136003,BZ2010043,51372119,and 51172110)+3 种基金the Science Fund from the Ministry of Education of China(Grant No.IRT1148)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113223110005)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions(Grant No.YX03001)the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and Information Displays,China
文摘Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas- mon resonance peaks, respectively, at 525, 575, and 775 nrn, are introduced into the hole extraction layer poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic ceils. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl- C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA.cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the local- ized surface plasmon resonanceand scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection.
基金supported by the National Natural Science Foundation of China(Nos.22105099 and 61874053)Natural Science Foundation of Jiangsu Province(No.BK20200700)+2 种基金the China Postdoctoral Science Foundation(No.2022M711591)the open research fund from Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology(No.OMST202101)the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).
文摘π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.
基金supported by the National Key Research and Development Program of China(2020YFB2008501)the National Natural Science Foundation of China(11904289)+3 种基金Key Research and Development Program of Shaanxi Province(2020ZDLGY04-08 and 2020GXLH-Z-027)the Ningbo Natural Science Foundation(202003N4003)the Fundamental Research Funds forthe Central Universities(3102019PY004,31020190QD010,and 3102019JC004)start-up funds from Northwestern Polytechnical University(19SH020159 and 20GH020140).
文摘Flexible and wearable pressure sensors attached to human skin are effective and convenient in accurate and real-time tracking of various physiological signals for disease diagnosis and health assessment.Conventional flexible pressure sensors are constructed using compressible dielectric or conductive layers,which are electrically sensitive to external mechanical stimulation.However,saturated deformation under large compression significantly restrains the detection range and sensitivity of such sensors.Here,we report a novel type of flexible pressure sensor to overcome the compression saturation of the sensing layer by softstrain ffect,enabling an utra-high sensitivity of~636 kPa^(-1) and a wide detection range from 0.1 kPa to 56 kPa.In addition,the cyclic loading-unloading test reveals the excellent stability of the sensor,which maintains its signal detection after 10.000 cycles of 10 kPa compression.The sensor is capable of monitoring arterial pulse waves from both deep tissue and distal parts,such as digital arteries and dorsal pedal arteries,which can be used for blood pressure estimation by pulse transit time at the same artery branch.
基金National Natural Science Foundation of China,Grant/Award Numbers:22034003,22204075,22275085Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20220769+1 种基金Excellent Research Program of Nanjing University,Grant/Award Number:ZYJH004State Key Laboratory of Analytical Chemistry for Life Science,Grant/Award Number:5431ZZXM2203。
文摘Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an aggregation-induced delayed ECL(AIDECL)active organic dot(OD)containing a benzophenone acceptor and dimethylacridine donor is reported,which shows high ECL efficiency via reverse intersystem crossing(RISC)of non-emissive 3R*to emissive 1R*,overcoming the spin-forbidden radiative decay from 3R*.By introducing dual donor-acceptor pairs into luminophores,it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions,and multiple spin-up conversion channels could be activated.As a consequence,the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD.Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC.This work represents a major step towards purely organic,high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.
基金supported by the Ministry of Science and Technology (2018YFA0306003)the National Natural Science Foundation of China (22225202,22132007,21991132,21972002,22172002,21972067).
文摘Investigation into the structural and magnetic properties of organic molecules at cryogenic temperature is beneficial for reducing molec-ular vibration and stabilizing magnetization,and is of great im-portance for constructing novel spintronics devices of better perfor-mance and scaling the device size down to nanoscale.In order to explore the possibility of fabricating molecule-based memory chips of ultrahigh density,two-dimensional close-packed molecular arrays with carboxylic acid molecules were constructed in the current work and the magnetic properties in a low-temperature scanning tunnel-ing microscope were also investigated.The results demonstrated that each nonmagnetic molecule can be controllably and independently switched into a stable spin-carrying state at 4 K by applying a voltage pulse with atomic resolution.Benefiting from the small size of a single molecule as the basic storage bit,the two-dimensional molecular ar-rays allowing controllable electrical manipulations on each molecule can behave as a platform of memory chip with an ultrahigh storage density of∼320 terabytes(Tb)(or∼2500 terabits)per square inch.This work highlights the potential and advantage of employing or-ganic molecules in developing future cryogenic information storage techniques and devices at nanoscale.
基金supported by NNSF of China (61525402, 61775095, 51803091, 61935004)Jiangsu Provincial key research and development plan (BE2017741)Six talent peak innovation team in Jiangsu Province (TD-SWYY-009)
文摘Photodynamic therapy(PDT),as one of the noninvasive clinical cancer phototherapies,suffers from the key drawback associated with hypoxia at the tumor microenvironment(TME),which plays an important role in protecting tumor cells from damage caused by common treatments.High concentration of hydrogen peroxide(H2O2),one of the hallmarks of TME,has been recognized as a double-edged sword,posing both challenges,and opportunities for cancer therapy.The promising perspectives,strategies,and approaches for enhanced tumor therapies,including PDT,have been developed based on the fast advances in H2O2-enabled theranostic nanomedicine.In this review,we outline the latest advances in H2O2-responsive materials,including organic and inorganic materials for enhanced PDT.Finally,the challenges and opportunities for further research on H2O2-responsive anticancer agents are envisioned.
基金supported by the NNSF of China(Nos.61525402,61604071)the Key University Science Research Project of Jiangsu Province(No.15KJA430006)the Natural Science Foundation of Jiangsu Province(No.BK20161012)
文摘With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.
基金supported by the National Natural Science Foundation of China(Nos.22075136 and 61874053)the open research fund from Anhui Province Key Laboratory of Environment-friendly Polymer Materials,Anhui Province Key Laboratory of Optoelectronic Materials Science and Technologythe State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).
文摘Precisely optimizing the morphology of functional hybrid polymeric systems is crucial to improve its photophysical property and further extend their optoelectronic applications. The physic-chemical property of polymeric matrix in electrospinning (ES) processing is a key factor to dominate the condensed structure of these hybrid microstructures and further improve its functionality. Herein, we set a flexible poly(ethylene oxide) (PEO) as the matrix to obtain a series of polydiarylfluorenes (including PHDPF, PODPF and PNDPF) electrospun hybrid microfibers with a robust deep-blue emission. Significantly different from the rough morphology of their poly(N-vinylcarbazole) (PVK) ES hybrid fibers, polydiarylfluorenes/PEO ES fibers showed a smooth morphology and small size with a diameter of 1∼2 µm. Besides, there is a relatively weak phase separation under rapid solvent evaporation during the ES processing, associated with the hydrogen-bonded-assisted network of PEO in ES fibers. These relative “homogeneous” ES fibers present efficient deep-blue emission (PLQY>50%), due to weak interchain aggregation. More interestingly, low fraction of planar (β) conformation appears in the uniform PODPF/PEO ES fibers, induced by the external traction force in ES processing. Meanwhile, PNDPF/PEO ES fibers present a highest sensitivity than those of other ES fibers, associated with the smallest diameter and large surface area. Finally, compared to PODPF/PVK fibers and PODPF/PEO amorphous ES fibers, PODPF/PEO ES fibers obtained from DCE solution exhibit an excellent quenching behavior toward a saturated DNT vapor, mainly due to the synergistic effect of small size, weak separation, β-conformation formation and high deep-blue emission efficiency.
基金the National Key R&D Program of China(No.2018YFC1105402)the National Natural Science Foundation of China(No.21875189)+1 种基金the Key R&D Program of Jiangsu Province(No.BE201740)the Innovative Talents Promotion Project of Shaanxi Province(No.2019KJXX-064)。
文摘The rapid in situ inhibition of bacterial contamination and subsequent infection without inducing drug resistance is highly vital for the successful implantation and long-term service of titanium(Ti)-based orthopedic implants.However,the instability and potential cytotoxicity of current coatings have deterred their clinical practice.In this study,anodic oxidized titania nanotubes(TNT)were modified with antibacterial polyhexamethylene guanidine(PG)with the assistance of 3,4-dihydroxyphenylacetic acid.Interestingly,the prepared TNT-PG coating exhibited superior in vitro antibacterial activity than flat Ti-PG coating and effectively killed typical pathogens such as Escherichia coli and superbug methicillinresistant Staphylococcus aureus with above 4-log reduction(>99.99%killed)in only 5 min.TNT-PG coating also exerted excellent hemocompatibility with red blood cells and nontoxicity toward mouse pre-osteoblasts(MC3 T3-E1)in 1 week of coculture.In addition,the efficient in vivo anti-infective property of this coating was observed in a rat subcutaneous infection model.More importantly,TNT-PG coating improved the expression of alkaline phosphatase and enhanced the extracellular matrix mineralization of pre-osteoblasts,denoting its osteoinductive capacity.This versatile TNT-PG coating with excellent antibacterial activity and biocompatibility could be a promising candidate for advanced orthopedic implant applications.
基金The work was supported by the National Natural Science Foundation of China(61874053)Natural Science Funds of the Education Committee of Jiangsu Province(18KJA430009)+6 种基金Natural Science Foundation of Jiangsu Province(BK20171470)“High-Level Talents in Six Industries”of Jiangsu Province(XYDXX-019)The open research fund from Key Laboratory for Organic Electronics and Information Display,State Key Laboratory of Supramolecular Structure and Materials(sklssm202014)Program for Postgraduates Research Innovation in University of Jiangsu Province(KYCX20-0996,KYCX18-1121)National Key Research and Development Program of China(2017YFB0404500)Major Program of National Natural Science Foundation of China(91833306)Overseas Merit Foundation of Science and Technology of Nanjing.
文摘The intrinsically rigid and limited strain of most conjugated polymers has encouraged us to optimize the extensible properties of conjugated polymers.Herein,learning from the hydrogen bonds in glucose,which were facilitated to the toughness enhancement of cellulose,we introduced interchain hydrogen bonds to polydiarylfluorene by amide-containing side chains.Through tuning the copolymerization ratio,we systematically investigated their influence on the hierarchical condensed structures,rheology behavior,tensile performances,and optoelectronic properties of conjugated polymers.Compared to the reference copolymers with a low ratio of amide units,copolymers with 30%and 40%amide units present a feature of the shearthinning process that resembled the non-Newtonian fluid,which was enabled by the interchain dynamic hydrogen bonds.Besides,we developed a practical and universal method for measuring the intrinsic mechanical properties of conjugated polymers.We demonstrated the significant impact of hydrogen bonds in solution gelation,material crystallization,and thin film stretchability.Impressively,the breaking elongation for P4 was even up to~30%,which confirmed the partially enhanced film ductility and toughness due to the increased amide groups.Furthermore,polymer light-emitting devices(PLEDs)based on these copolymers presented comparable performances and stable electroluminescence(EL).Thin films of these copolymers also exhibited random laser emission with the threshold as low as 0.52μJ/cm^(2),suggesting the wide prospective application in the field of flexible optoelectronic devices.
基金supported by the National Natural Science Foundation of China (Nos.22075136,61874053)National Key Research and Development Program of China (No.2020YFA0709900)+5 种基金Natural Science Funds of the Education Committee of Jiangsu Province (No.18KJA430009)Natural Science Foundation of Jiangsu Province (No.BK20200700)“High-Level Talents in Six Industries” of Jiangsu Province (No.XYDXX-019)Chain Postdoctoral Science Foundation (No.2021M692623)the open research fund from State Key Laboratory of Supramolecular Structure and Materials (No.sklssm202108)Anhui Province Key Laboratory of Environmentfriendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology。
文摘Film morphology of emissive layers is crucial to the performance and stability of solution-processable organic light-emitting diodes(OLEDs). Compared to the interpenetration of conjugated polymer chain,small molecular emitter with a flexible side chain always presents easily aggregation upon external treatment, and caused π-electronic coupling, which is undesirable for the efficiency and stability of deep-blue OLEDs. Herein, we proposed a side-chain coupling strategy to enhance the film morphological an emission stability of solution-processable small molecular deep-blue emitter. In contrary to “parent” MC8 TPA,the crosslinkable styryl and vinyl units were introduced as ended unit at the side-chain of Cm TPA and OEYTPA. Interestingly, Cm TPA and OEYTPA films present a relatively stable morphology and uniform deep-blue emission after thermal annealing(160 ℃) in the atmosphere, different to the discontinuous MC8 TPA annealed film. Besides, compared to the Cm TPA and OEYTPA ones, serious polaron formation in the MC8 TPA annealed film also negative to the deep-blue emission, according to transient absorption analysis. Therefore, both Cm TPA and OEYTPA annealed film obtained at 140 ℃ present an excellent deep-blue ASE behavior with a 445 nm, but absence for MC8 TPA ones, associated with the disruption of annealed films. Finally, enhancement of device performance based on Cm TPA and OEYTPA film(~40%)after thermal annealing with a similar performance curves also confirmed the assumption above. Therefore, these results also supported the effectiveness of our side-chain coupling strategy for optoelectronic applications.
基金the Six Peak Talents Foundation of Jiangsu Province(Nos.XCL-CXTD-009 and XYDXX-019)the National Natural Science Foundation of China(Nos.22075136,21471082,21472186,61874053 and 21272231)+3 种基金Natural Science Funds of the Education Committee of Jiangsu Province(Nos.18KJA510003 and 18KJA430009)Natural Science Foundation of Jiangsu Province(No.BK20200700)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003)the open research fund from Key Laboratory for Organic Electronics and Information Displays and Qing Lan Project of Jiangsu Province.
文摘A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emission properties.The supramolecular tunable PPFOH aggregation in PVK matrix endows the complex with a smart energy transfer behavior to obtain the multi-color emissions.In stark contrast to PVK fibers,the emission color of PPFOH/PVK fibers with an efficient dispersion of PPFOH fluorophores at a proper dope ratio can be tuned in a wide spectrum of blue(0.1%),sky blue(0.5%),nearly white(1%),cyan(2%),green(5%)and yellow(10%).Besides,conductive behaviors of the microfiber were demonstrated in accompany with the increment of the doping ratio of PPFOH to PVK.Successful fabrication of polymer light-emitting diode(PLED)based on the blended electrospun fiber provided a further evidence of its excellent electrical property for potential applications in optoelectronic devices.
基金financially supported by the Natural Science Foundation of China (62288102, 22379067, 52172198, 61705102, 62205142 and 52302266)the National Key R&D Program of China (2023YFB4204500)+4 种基金the Jiangsu Provincial Departments of Science and Technology (BE2022023, BK20220010, and BZ2023060)the Innovation Project of Optics Valley Laboratory (OVL2021BG006)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2021WNLOKF003)the Natural Science Basic Research Plan in Shaanxi Province of China (2021JLM-43)the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (2020GXLH-Z-007 and 2020GXLH-Z-014)。
文摘The low-cost and scalable printable mesoporous perovskite solar cells(p-MPSCs) face significant challenges in regulating perovskite crystal growth due to their nanoscale mesoporous scaffold structure, which limits the improvement of device power conversion efficiency(PCE). In particular, the most commonly used solvents, N,N-dimethylformamide(DMF) and dimethyl sulfoxide(DMSO), have a single chemical interaction with the precursor components and high volatility, which is insufficient to self-regulate the perovskite crystallization process, leading to explosive nucleation and limited growth within mesoporous scaffolds. Here, we report a mixed solvent system composed of methylamine formaldehyde(MAFa)-based ionic liquid and acetonitrile(ACN) with the strong C=O–Pb coordination and N–H···I hydrogen bonding with perovskite components. We found that the mixed solvent system is beneficial for the precursor solution to homogeneously penetrate into the mesoporous scaffold,and the strong C=O–Pb coordination and N–H···I hydrogen bonding interaction can promote the oriented growth of perovskite crystals. This synergistic effect increased the PCE of the p-MPSCs from 17.50% to 19.21%, which is one of the highest records for p-MPSC in recent years. Additionally, the devices exhibit positive environmental stability, retaining over 90% of the original PCE after 1,200 h of aging under AM 1.5 illumination conditions at 55 ℃ and 55% humidity.
基金supported by the National Science Funds for Distinguished Young Scholars(No.21625401)the National Natural Science Foundation(Nos.21727808 and 21971114)+1 种基金the Jiangsu Provincial Founds for Natural Science Foundation(No.BK20200090)National Key R&D Program of China(No.2017YFA0207201).
文摘Fabrication of multifunctional catalysts has always been the pursuit of synthetic chemists due to their efficiency,cost-effectiveness,and environmental friendliness.However,it is difficult to control multi-step reactions in one-pot,especially the spatial compartmentalization of incompatible active sites.Herein,we constructed metal-organic framework(MOF)composites which regulate the location distribution of metal nanoparticles according to the reaction path and coupled with the diffusion of substrates to achieve tandem reaction.The designed UiO-66-Pt-Au catalyst showed good activity and selectivity in hydrosilylation-hydrogenation tandem reaction,because the uniform microporous structures can control the diffusion path of reactants and intermediates,and Pt and Au nanoparticles were arranged in core-shell spatial distribution in UiO-66.By contrast,the low selectivity of catalysts with random deposition and physical mixture demonstrated the significance of artificial control to the spatial compartmentalization of active sites in tandem catalytic reactions,which provides a powerful approach for designing high-performance and multifunctional heterogeneous catalysts.
基金supported by the National Natural Science Foundation of China(grant nos.51903239,21835006)S.L.also appreciates the Natural Science Foundation of Jiangsu Province(grant no.BK20221317)the startup funding from Nanjing Tech University.
文摘In organic solar cells (OSCs), developing high-performing easily synthesized photoactive materials is essential for pursuing cost- effective balance. Herein, we have designed and synthesized a pair of wide-band-gap polymers (PBDE4T-0F and PBDE4T-2F), using the low synthesis cost dicarboxylic ester-substituted quaterthiophene as the building block. Despite the minor change of molecular structure for polymer PBDE4T-xF, the fluorine substituent in polymer PBDE4T-2F greatly enhances its interchain aggregation. The higher aggregation tendency of ester-modified polymer in solution is beneficial for reducing both the aggregate size and π-π stacking distance of blend film, which contribute to the highly efficient exciton dissociation and symmetric charge transport. An impressive power-conversion efficiency (PCE) of 16.1% is achieved for the PBDE4T-2F:BTP-eC9-based device, while its counterpart only delivers a PCE of 5.8% with distinctly lower short-circuit current density (J_(sc)) and fill factor. Notably, the aggregation effect of donor polymer has also been found to be associated with the energy level shifts, and thus the variation of charge transfer energy and voltage losses for blend system. The results suggest that simultaneously reduced voltage loss and increased J_(sc) can be expected by further finely tuning the aggregation behavior of the ester-modified oligothiophene-based donor polymer.
基金the National Key R&D Program of China(No.2017YFA0204700)the National Natural Science Foundation of China(No.11974180)+2 种基金the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-021)the China-Sweden Joint Mobility Project(No.51811530018)the Fundamental Research Funds for the Central Universities.
文摘Chemical and biological sensing play important roles in healthcare,environmental science,food-safety tests,and medical applications.Flexible organic electrochemical transistors(OECTs)have shown great promise in the field of chemical and biological sensing,owing to their superior sensitivity,high biocompatibility,low cost,and light weight.Herein,we summarize recent progress in the fabrication of flexible OECTs and their applications in chemical and biological sensing.We start with a brief introduction to the working principle,configuration,and sensing mechanism of the flexible OECT-based sensors.Then,we focus on the fabrication of flexible OECT-based sensors,including material selection and structural engineering of the components in OECTs:the substrate,electrodes,electrolyte,and channel.Particularly,the gate modification is discussed extensively.Then,the applications of OECT-based sensors in chemical and biological sensing are reviewed in detail.Especially,the array-based and integrated OECT sensors are also introduced.Finally,we present the conclusions and remaining challenges in the field of flexible OECT-based sensing.Our timely review will deepen the understanding of the flexible OECT-based sensors and promote the further development of the fast-growing field of flexible sensing.
基金financially supported by the National Natural Science Foundation of China(Nos.11904323,21871137,21902148 and 21971113)。
文摘Impurity doping not only provides a fundamental approach to impart unique electronic,magnetic and optical properties to target nanomaterials,but also has critical influence on nucleation and growth of many functional nanocrystals.In the current study,Y^(3+)and Sc^(3+)were adopted to tune the shape,size,and upconversion luminescence properties of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er samples,respectively.When Y^(3+)doping concentration was lower than 10 mol%,the size and shape of Na_(3)ScF_(6):Yb/Er(18/2)nanoparticles gradually changed from~18 nm rhombus to 36 nm spheres.Subsequently,the coexistence of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er nanoparticles was observed during 20 mol%-50 mol%Y^(3+)doping,and finally NaYF_(4):Yb/Er nanoparticles became the only product at>60 mol%Y^(3+)doping where the role of Sc^(3+)turned into dopant and the size of nanocrystals decreased from~30 to 20 nm gradually.Both Y^(3+)and Sc^(3+)ions doping could enhance the upconversion luminescence intensity of Na_(3)ScF_(6):Yb/Er and NaYF_(4):Yb/Er samples,for which possible mechanism was proposed from the perspective of crystal structure.Finally,the upconversion luminescence details were disclosed.
基金the Natural Science Foundation of China(51972172,91833304,91733302)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(BK20200034)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2021JLM-43)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-007,2020GXLH-Z-014)the Projects of International Cooperation and Exchanges NSFC(51811530018)the Young 1000 Talents Global Recruitment Program of China。
文摘Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubility of non-halide lead sources is highly limited by traditional solvents due to the chemical interaction limitation.Here,we report a series of non-halide lead sources(e.g.,lead acetate(PbAc_(2)),lead sulfate(PbSO_(4)),lead carbonate(PbCO_(3)),lead nitrate(Pb(NO_(3))_(2)),lead formate(Pb(HCOO)_(2))and lead oxalate(PbC_(2)O_(4)))can be well dissolved in an ionic liquid solvent methylammonium acetate(MAAc).We found that the universal strong coordination of C=O with lead ion(Pb^(2+))and the formation of hydrogen bonds were observed in perovskite precursor solution.This allows the dissolution of non-halide lead salts and is able to produce perovskite film with smooth,compact,and full coverage crystal grain.The power conversion efficiency(PCE)of 14.48%,19.21%,and 20.13%in PSCs based on PbSO_(4),PbAc_(2),and PbCO_(3) was achieved,respectively,in the absence of any additives and passivation agents.This study demonstrates the universality of ionic liquid for the preparation of PSCs based on nonhalides lead sources.