期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
A Data-Driven Adaptive Method for Attitude Control of Fixed-Wing Unmanned Aerial Vehicles 被引量:1
1
作者 Meili Chen Yuan Wang 《Advances in Aerospace Science and Technology》 2019年第1期1-15,共15页
In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of... In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method. 展开更多
关键词 DATA-DRIVEN Adaptive Method ATTITUDE CONTROL Unmanned AERIAL Vehicles (UAV) Internal Model CONTROL
下载PDF
Design and Dynamics Analysis of Anti-skid Braking System for Aircraft with Four-wheel Bogie Landing Gears 被引量:1
2
作者 ZHANG Ming NIE Hong ZHU Rupeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期277-284,共8页
In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to a... In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway. 展开更多
关键词 anti-skid braking system four-wheel bogie landing gear multi-channel control dynamics model
下载PDF
Parameter Optimization of Nose Landing Gear Considering Both Take-off and Landing Performance of Catapult Take-off Carrier-Based Aircraft 被引量:5
3
作者 Zhang Ming Nie Hong He Zhihang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期187-198,共12页
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp... Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off. 展开更多
关键词 carrier-based AIRCRAFT BUFFER PERFORMANCE fast-extension PERFORMANCE AIRCRAFT design optimization sensitivity analysis
下载PDF
Optimization design containing dimension and buffer parameters of landing legs for reusable landing vehicle 被引量:2
4
作者 Bo LEI Ming ZHANG +1 位作者 Hanyu LIN Hong NIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期234-249,共16页
For the landing legs with single air chamber in the buffer structure of the reusable landing vehicle,the geometric topological models and the dynamic model associated with the hard points of the landing legs are estab... For the landing legs with single air chamber in the buffer structure of the reusable landing vehicle,the geometric topological models and the dynamic model associated with the hard points of the landing legs are established.The geometric constraint relationship in the design of the landing legs is also obtained.The whole vehicle dropping test is conducted,and the test results agree well with that of the simulation model,which validates the dynamic model.Based on the verified model,the effect of hard point positions on the performance of the landing system is analyzed.The multidisciplinary collaborative optimization algorithm and archive-based micro genetic algorithm(CO-AMGA)are used to optimize the design parameters that contain the hard points and the damper.Compared with artificial iteration,the maximum landing impact acceleration response of the vehicle and the buffer struct maximum force are reduced by 30.70%and 14.51%respectively,and the maximum length of retractable pillar decreases by 8.54%while the design margin increases by 69.11%.The proposed optimization method is efficient and can greatly facilitate the design of landing legs. 展开更多
关键词 Dynamics Impact test Landing system Optimization design Reusable landing vehicle
原文传递
Structural reliability analysis using a hybrid HDMR-ANN method
5
作者 Bhaw Nath Jha 李洪双 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第11期2532-2541,共10页
A new hybrid method is proposed to estimate the failure probability of a structure subject to random parameters. The high dimensional model representation(HDMR) combined with artificial neural network(ANN) is used to ... A new hybrid method is proposed to estimate the failure probability of a structure subject to random parameters. The high dimensional model representation(HDMR) combined with artificial neural network(ANN) is used to approximate implicit limit state functions in structural reliability analysis. HDMR facilitates the lower dimensional approximation of the original limit states function. For evaluating the failure probability, a first-order HDMR approximation is constructed by deploying sampling points along each random variable axis and hence obtaining the structural responses. To reduce the computational effort of the evaluation of limit state function, an ANN surrogate is trained based on the sampling points from HDMR. The component of the approximated function in HDMR can be regarded as the input of the ANN and the response of limit state function can be regarded as the target for training an ANN surrogate. This trained ANN surrogate is used to obtain structural outputs instead of directly calling the numerical model of a structure. After generating the ANN surrogate, Monte Carlo simulation(MCS) is performed to obtain the failure probability, based on the trained ANN surrogate. Three numerical examples are used to illustrate the accuracy and efficiency of the proposed method. 展开更多
关键词 high DIMENSIONAL model REPRESENTATION structural reliability artificial NEURAL network FAILURE PROBABILITY
下载PDF
Two Degree-of-Freedom Dynamic Theoretical Model on Tile Thermal Protection System
6
作者 HUANG Jie YAO Weixing +3 位作者 KONG Bin YANG Jiayong WANG Man ZHANG Qingmao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期139-145,共7页
In order to study the dynamic behaviors of the thermal protection system(TPS)and dynamic strength of the strain-isolation-pad(SIP),a two degree-of-freedom dynamic theoretical model is presented under the acoustic exci... In order to study the dynamic behaviors of the thermal protection system(TPS)and dynamic strength of the strain-isolation-pad(SIP),a two degree-of-freedom dynamic theoretical model is presented under the acoustic excitation and base excitation. The tile and SIP are both considered as the elastic body and simplified as a mass point,a linear spring and a damping element. The theoretical solutions are derived,and the reasonability of theoretical model is verified by comparing the theoretical results with the numerical results. Finally,the influences on the dynamic responses of TPS by the structural damping coefficient of TPS,elasticity modulus and thickness of SIP are analyzed.The results show that the material with higher damping,and SIP with thicker size and lower elastic modulus should be considered to reduce the dynamic responses and intensify the security of TPS. The researches provide a theoretical reference for studying the dynamic behaviors of TPS and the dynamic strength of SIP. Besides,the dynamic theoretical model can be used as a quick analysis tool for analyzing the dynamic responses of TPS during the initial design phase. 展开更多
关键词 thermal protection system DYNAMIC THEORETICAL model ACOUSTIC EXCITATION base EXCITATION
下载PDF
All-Electric Aircraft Nose Wheel Steering System with Two Worm Gears
7
作者 Zhang Ming Li Chuang +1 位作者 Wu Xin Zhu Yin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期170-180,共11页
As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic p... As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives. 展开更多
关键词 mechanotronics DESIGN NOSE wheel STEERING SYSTEM all-electric aircraft DESIGN LANDING gear
下载PDF
Predictive Control of Quad-Rotor Delivering Unknown Time-Varying Payloads Based upon Extended State Observer
8
作者 Yuan Wang 《Advances in Aerospace Science and Technology》 2019年第2期29-41,共13页
In this paper, robust control problem is addressed for quad-rotor delivering unknown time-varying payloads. Firstly, the model of a quad-rotor carrying payloads is built. Dynamics of the payloads are treated as distur... In this paper, robust control problem is addressed for quad-rotor delivering unknown time-varying payloads. Firstly, the model of a quad-rotor carrying payloads is built. Dynamics of the payloads are treated as disturbances and added into the model of the quad-rotor. Secondly, to enhance system robust-ness, the extended state observer (ESO) is applied to estimate the disturbances from the payloads for feedback compensation. Then a type of predictive controller targeting multiple-input-multiple-output (MIMO) system is developed to degrade the influences caused by sudden changes from load-ing/dropping of the payloads. Finally, by making comparison with the con-ventional cascade proportional-integral-derivative (CPID) and the sliding mode control (SMC) approaches, superiority of the scheme developed is va-lidated. The simulation results indicate that the CPID method shows poor performance on attitude stabilization and the SMC shows input chattering phenomenon even it can achieve satisfied control performances. 展开更多
关键词 Quad-Rotor PAYLOADS Delivery ATTITUDE CONTROL Disturbance Estimation Feedback Compensation Predictive CONTROL
下载PDF
Multidisciplinary design optimization of adaptive wing leading edge 被引量:5
9
作者 SUN RuJie CHEN GuoPing +2 位作者 ZHOU Chen ZHOU LanWei JIANG JinHui 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第7期1790-1797,共8页
Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems ... Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems of the adaptive leading edge. In the first step, the procedure of airfoil optimization is carried out with an initial configuration of NACA 0006. On the basis of the combination of design of experiment (DOE), response surface method (RSM) and genetic algorithm (GA), an adaptive air-foil can be obtained whose lift-to-drag ratio is larger than the baseline airfoil's at the given angle of attack and subsonic speed.The next step is to design a compliant structure to achieve the target airfoil shape, which is the optimization result of the previous step. In order to minimize the deviation of the deformed shape from the target shape, the load path representation topology method is presented. This method is developed by way of GA, with size and shape optimization incorporated in it simul-taneously. Finally, a comparison study with the Solid Isotropic Material with Penalization (SIMP) method in Altair OptiStruct is conducted, and the results demonstrate the validity and effectiveness of the proposed approach. 展开更多
关键词 ADAPTIVE WING MULTIDISCIPLINARY design OPTIMIZATION aerodynamic OPTIMIZATION STRUCTURAL OPTIMIZATION GENETIC algorithm
原文传递
Reliability analysis of arresting hook engaging arresting cable for carrier-based aircraft influenced by multifactors 被引量:2
10
作者 Yiming PENG Yin YIN +2 位作者 Pengpeng XIE Xiaohui WEI Hong NIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期311-323,共13页
The carrier-based aircraft landing and arrest process is complex and nonlinear,and includes the coupling effect between the aircraft and arresting system.It has many uncertain factors,which lead to difficulty in the r... The carrier-based aircraft landing and arrest process is complex and nonlinear,and includes the coupling effect between the aircraft and arresting system.It has many uncertain factors,which lead to difficulty in the reliability analysis.To make the reliability analysis more accurate and effective,this paper presents some studies.Taking a certain type of carrier-based aircraft as the research object,a dynamic model of the landing and arrest cable was established,and the accuracy of the model was verified using laboratory test results.Based on the model,this paper shows how the key parameters,including the sinking velocity,pitch angle and horizontal velocity,affect the collision rebound performance of the arresting hook.After that,a limit state equation of the arresting hook system’s reliability was established.For the implicit limit state equation,a surrogate model of the reliability of the arresting hook was established using the Support Vector Machine(SVM)method,and then reliability analysis was carried out using the Monte Carlo method.Finally,it was explained in detail how the key parameters affect the reliability of the hook engaging the arresting cable,and some meaningful conclusions were obtained.This analysis method and its results can provide a reference for the top-level parameter design of carrier-based aircraft and reliability research on the arresting systems. 展开更多
关键词 Arresting cable Arresting devices DYNAMICS RELIABILITY Support Vector Machines
原文传递
An architecture decomposition method of pneumatic catapult system based on OPM and DSM
11
作者 Lu GAN Gang YANG +3 位作者 Xianhui LI Enze ZHU Hu CHEN Xiaohui WEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期168-181,共14页
The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspect... The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspective,and cluster analysis play a vital role in the early phase of system architecture development.In order for the system to emerge anticipated and desirable intrinsic functional properties,an architecture decomposition method based on the ObjectProcess Methodology(OPM)and Design Structure Matrix(DSM)is put forward in this paper.The OPM is proposed to model the UAV launch process formally,and the matrix representation of the architecture of the pneumatic launch system is established.After the extension of the definition and operations of DSM,with the Idicula-Gutierrez-Thebeau Algorithm plus(IGTA+)clustering algorithm,the transformation of the pneumatic launch system architecture from process decomposition to function decomposition is demonstrated in this paper.The analysis shows that the architecture decomposition of the pneumatic launch system meets the functional requirements of stakeholders. 展开更多
关键词 Architecture decomposition Cluster analysis Design structure matrix Object-process methodology Pneumatic catapult system
原文传递
A Layout Optimization Method of Composite Wing Structures Based on Carrying Efficiency Criterion 被引量:6
12
作者 ZHAO Qun DING Yunliang JIN Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期425-431,共7页
A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout ... A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout is optimized at the subsystem level to satisfy the constraints from system level. The approaching degrees of various failure critical loads in wing panels are employed to gauge the structure’s carrying efficiency. By optimizing the efficiency as an objective, the continuity of the problem could be guaranteed. Stiffened wing panels are modeled by the equivalent orthotropic plates, and the global buckling load is predicted by energy method. The nonlinear effect of stringers’ support elasticity on skin local buckle resistance is investigated and approximated by neural network (NN) surrogate model. These failure predictions are based on analytical solutions, which could effectively save calculation resources. Finally, the integral optimization of a large-scale wing structure is completed as an example. The result fulfills design requirements and shows the feasibility of this method. 展开更多
关键词 composite wing structure layout optimization carrying efficiency BUCKLING equivalent stiffness energy method surrogate model
原文传递
Coupled fluid-thermal investigation on non-ablative thermal protection system with spiked body and opposing jet combined configuration 被引量:5
13
作者 Jie HUANG Weixing YAO Xianyang SHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1390-1402,共13页
In this paper, a Non-Ablative Thermal Protection System(NATPS) with the spiked body and the opposing jet combined configuration is proposed to reduce the aerodynamic heating of the hypersonic vehicle, and the coupled ... In this paper, a Non-Ablative Thermal Protection System(NATPS) with the spiked body and the opposing jet combined configuration is proposed to reduce the aerodynamic heating of the hypersonic vehicle, and the coupled fluid-thermal numerical analysis is performed to study the thermal control performance of the NATPS. The results show that the spiked body pushes the bow shock away from the protected structure and thus reduces the shock intensity and the wall heat flux. In addition, the low temperature gas of the opposing jet separates the high temperature gas behind the shock from the nose cone of the spiked body, ensuring the non-ablative property of the spiked body. Therefore, the NATPS reduces the aerodynamic heating by the reconfiguration of the flow field, and the thermal control efficiency of the system is better than the Thermal Protection System(TPS) with the single spiked body and the single opposing jet. The influencing factors of the NATPS are analyzed. Both increasing the length of the spiked body and reducing the total temperature of the opposing jet can improve the thermal control performance of the NATPS and the nonablative property of the spiked body. However, increasing the heat conductivity coefficient of the spiked body can enhance benefit the non-ablative property of the spiked body, but has little influence on the thermal control performance of the NATPS. 展开更多
关键词 COUPLED method NON-ABLATIVE Opposing JET Spiked BODY THERMAL protection system
原文传递
Shock control bump optimization for a low sweep supercritical wing 被引量:4
14
作者 DENG Feng QIN Ning +2 位作者 LIU XueQiang YU XiongQing ZHAO Ning 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第10期2385-2390,共6页
Shock control bumps are a promising technique in reducing wave drag of civil transport aircraft flying at transonic speeds.This paper investigates the optimization of 3D shock control bumps on a supercritical wing wit... Shock control bumps are a promising technique in reducing wave drag of civil transport aircraft flying at transonic speeds.This paper investigates the optimization of 3D shock control bumps on a supercritical wing with a sweep angle of 16°at the1/4 chord.A similar supercritical wing with a higher sweep angle of 24.5°at the 1/4 chord has been adopted as a baseline for the study.Numerical results show that the drag coefficient of the low sweep wing with the optimized 3D shock control bumps is reduced below that for the high sweep wing,indicating shock control bumps can be used as an effective means to reduce the wave drag caused by reducing the wing sweep angle.From the point of view of the wing structure design,lower sweep angle will also bring the benefits of weight reduction,resulting in further fuel reduction. 展开更多
关键词 超临界机翼 冲击控制 凸优化 运输飞机 风阻系数 数值结果 结构设计 后掠角
原文传递
Parameter effects on high-speed UAV ground directional stability using bifurcation analysis 被引量:4
15
作者 Qiaozhi YIN Xiaohui WEI +1 位作者 Hong NIE Jian DENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期1-14,共14页
A loss of ground directional stability can trigger a high-speed Unmanned Aerial Vehicle(UAV)to veer off the runway.In order to investigate the combined effects of the key structural and operational parameters on the U... A loss of ground directional stability can trigger a high-speed Unmanned Aerial Vehicle(UAV)to veer off the runway.In order to investigate the combined effects of the key structural and operational parameters on the UAV ground directional stability from a global perspective,a fully parameterized mathematical high-speed UAV ground nonlinear dynamic model is developed considering several nonlinear factors.The bifurcation analysis procedure of a UAV ground steering system is introduced,following which the simulation efficiency is greatly improved comparing with the time-domain simulation method.Then the numerical continuation method is employed to investigate the influence of the nose wheel steering angle and the global stability region is obtained.The bifurcation parameter plane is divided into several parts with different stability properties by the saddle nodes and the Hopf bifurcation points.We find that the UAV motion states will never cross the bifurcation curve in the nonlinear system.Also,the dual-parameter bifurcation analyses are presented to give a complete description of the possible steering performance.It is also found that BT bifurcation appears when the UAV initial rectilinear velocity and the tire frictional coefficient vary.In addition,results indicate that the influence of tire frictional coefficient has an opposite trend to the influence of initial rectilinear velocity.Overall,using bifurcation analysis method to identify the parameter regions of a UAV nonlinear ground dynamic system helps to improve the development efficiency and quality during UAV designing phase. 展开更多
关键词 Bifurcation analysis Ground directional stability High-speed UAV Nonlinear system Numerical continuation
原文传递
Fatigue damage rule of LY12CZ aluminium alloy under sequential biaxial loading 被引量:2
16
作者 WANG YingYu ZHANG DaChuan YAO WeiXing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第1期98-103,共6页
A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ aluminium alloy.The loading paths of 90°out-of-phase,45°out-of-phase and 45°in-phase ar... A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ aluminium alloy.The loading paths of 90°out-of-phase,45°out-of-phase and 45°in-phase are utilized.The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed.By introducing a parameter which is a function of the phase lag angle between the axial and the torsional loading,a new multiaxial nonlinear fatigue damage cumulative model is proposed.The proposed model is evaluated by the experimental data for two-level loading,multi-level loading of LY12CZ aluminium alloy,and multi-level loading of 45 steel.Fatigue lives predicted are within a factor of 2 scatter band. 展开更多
关键词 LY12CZ铝合金 疲劳损伤 双轴 累积损伤模型 负荷预测 加载路径 载荷试验 累积规律
原文传递
Bifurcation analysis of dual-sidestay landing gear locking performance considering joint clearance 被引量:1
17
作者 Kui XU Yin YIN +2 位作者 Yixin YANG Hong NIE Xiaohui WEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期209-226,共18页
Sidestay lock mechanism is an important part of landing gear system,and the locking performance can be analyzed based on changes in its stability.However,during numerical continuation analysis of fully-rigid dual-side... Sidestay lock mechanism is an important part of landing gear system,and the locking performance can be analyzed based on changes in its stability.However,during numerical continuation analysis of fully-rigid dual-sidestay landing gear without clearance,it has been found that the appearance of bifurcation points does not necessarily imply that both sidestay links can be locked synchronously.This problem reveals the limitations of fully-rigid model with ideally-articulated in solving dual-sidestay mechanisms with extremely high motion sensitivity.Therefore,this study proposes a bifurcation analysis method for synchronous locking of dual-sidestay landing gears,which takes into consideration the joint clearance.For in-depth analysis of this problem,we initially build kinematic and mechanical models of a landing gear mechanism that consider joint clearance.Then,the models are solved based on continuation.The fundamental causes of synchronous locking are discussed in detail,and the number of bifurcation points is found to be closely related to whether the landing gear is completely locked.Finally,the effects of structural parameters on the synchronous locking are analyzed,and the feasible region of parameters satisfying synchronous locking condition is given,which agrees well with the test results. 展开更多
关键词 BIFURCATION CLEARANCE Dual-sidestay landing gear Numerical continuation Synchronous locking
原文传递
Study on modal characteristics and vibration reduction of an aircraft rotor–stator brake-induced squeal system 被引量:1
18
作者 Qiaozhi Yin Xiaohui Wei +1 位作者 Hong Nie Jian Deng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第6期1350-1359,I0004,共11页
Based on the modal coupling theory,the rotor and stator contact stiffness and axial relative velocity are considered to build an electric aircraft brake dynamic system model in this study.Both the complex modal analys... Based on the modal coupling theory,the rotor and stator contact stiffness and axial relative velocity are considered to build an electric aircraft brake dynamic system model in this study.Both the complex modal analysis and transient dynamic analysis methods are used to study the aircraft brake squeal performance and vibratory mechanism.The unstable vibration modes indicate that the out-of-plane vibration plays an important role and the feed-in energy is larger than the output energy in the brake rotor–stator module so that brake squeal takes place.Then the influences of the contact stiffness,friction damping and frictional coefficient on the brake squeal system are carried out,laying the foundation for the three proposed vibration suppression methods.Results show that the coefficient negative-slope condition will intensify the vibration.Also,a linear relationship between the squeal factor and the frictional coefficient is obtained to provide a guidance to predict squeal stability under more conditions.Vibration reduction design shows that adding a damping layer to the brake mechanism and chamfering the edge of braking stators both can reduce brake squeal effectively,while slotting braking stators is invalid in aircraft braking system. 展开更多
关键词 Aircraft rotor-stator bake-induced vibration Brake squeal-Vibration stability Modal coupling Vibration suppression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部