期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pore-water geochemistry in methane-seep sediments of the Makran accretionary wedge off Pakistan:Possible link to subsurface methane hydrate
1
作者 Xianrong Zhang Jianming Gong +6 位作者 Zhilei Sun Jing Liao Bin Zhai Libo Wang Xilin Zhang Cuiling Xu Wei Geng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第9期23-32,共10页
Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston ... Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area. 展开更多
关键词 Makran accretionary wedge methane-seep pore water geochemistry anaerobic oxidation of methane
下载PDF
Hydrate formation and distribution within unconsolidated sediment:Insights from laboratory electrical resistivity tomography
2
作者 Yanlong Li Nengyou Wu +5 位作者 Changling Liu Qiang Chen Fulong Ning Shuoshi Wang Gaowei Hu Deli Gao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第9期127-136,共10页
Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic e... Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation. 展开更多
关键词 natural gas hydrate electrical resistivity electrical resistivity tomography accumulation mechanism electrical conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部