期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout 被引量:4
1
作者 Yuci Wang Kai Jiang +4 位作者 Jiaren Du Licheng Zheng Yike Li Zhongjun Li Hengwei Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期148-162,共15页
Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a fac... Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots(CDs) through in situ embedding o-CDs(being prepared from o-phenylenediamine) into cyanuric acid(CA) matrix(named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence(TADF) and room temperature phosphorescence(RTP) of o-CDs,respectively. In addition,the formation of covalent bonds between o-CDs and CA,and the presence of multiple fixation and rigid e ects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA,it is completely covered by the green TADF during directly observing. The NIR RTP signal,however,can be readily captured if an optical filter(cut-o wavelength of 600 nm) being used. By utilizing these unique features,the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally,the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances. 展开更多
关键词 Carbon dots Dual-mode afterglow Room temperature phosphorescence Thermal activated delayed fluorescence Information security
下载PDF
In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery 被引量:5
2
作者 Shuai Zhao Shan Sun +6 位作者 Kai Jiang Yuhui Wang Yu Liu Song Wu Zhongjun Li Qinghai Shu Hengwei Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期193-205,共13页
Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment.In this work,a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid wa... Multifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment.In this work,a novel method for the preparation of a fluorescent mesoporous silica–carbon dot nanohybrid was developed.Carbon dots(CDs),from folic acid as the raw material,were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles(MSNs–NH2) via a microwave-assisted solvothermal reaction.The as-prepared nanohybrid(designated MSNs–CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs(e.g.,mesoporous structure,large specific surface area,and good biocompatibility),demonstrating a potential capability for fluorescence imagingguided drug delivery.More interestingly,the MSNs–CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells(e.g.,HeLa),indicating that folic acid still retained its function even after undergoing the solvothermal reaction.Benefited by these excellent properties,the fluorescent MSNs–CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted deliveryof anticancer drugs(e.g.,doxorubicin),thereby enhancing chemotherapeutic efficacy and reducing side effects.Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms,which is beneficial in the diagnosis and therapy of cancers in future. 展开更多
关键词 MESOPOROUS silica nanoparticles CARBON DOTS Fluorescence imaging Targeted drug delivery Chemotherapy
下载PDF
Characterization of Li-rich layered oxides by using transmission electron microscope
3
作者 Hu Zhao Bao Qiu +3 位作者 Haocheng Guo Kai Jia Zhaoping Liu Yonggao Xia 《Green Energy & Environment》 SCIE 2017年第3期174-185,共12页
Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs fur... Lithium-rich layered oxides(LrLOs) deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay. 展开更多
关键词 Lithium-ion battery Transmission electron microscope Lithium-rich layered oxide Cathode material
下载PDF
Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode 被引量:1
4
作者 Hewei Xu Ying He +7 位作者 Zibo Zhang Junli Shi Pingying Liu Ziqi Tian Kan Luo Xiaozhe Zhang Suzhe Liang Zhaoping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期375-382,I0011,共9页
Lithium metal anode is regarded as the ultimate choice for next-generation energy storage systems,due to the lowest negative electrochemical potential and super high theoretical specific capacity.However,the growth of... Lithium metal anode is regarded as the ultimate choice for next-generation energy storage systems,due to the lowest negative electrochemical potential and super high theoretical specific capacity.However,the growth of lithium dendrite during the cycling process is still one of the most critical bottlenecks for its application.In this work,a slurry-like hybrid electrolyte is proposed towards the application for lithium metal anode,which is composed of a liquid electrolyte part and a nanometric silane-Al2O3 particle part.The hybrid electrolyte shows high ionic conductivity(3.89×10-3 S cm-1 at 25℃)and lithium-ion transference number(0.88).Especially,the resistance of hybrid electrolyte decreases compared to that of liquid electrolyte,while the viscosity of hybrid electrolyte increases.It is demonstrated that the hybrid electrolyte can effectively suppress the growth of lithium dendrite.Stable cycling of Li/Li cells at a current density up to 1 mA cm-2 is possible.The hybrid electrolyte helps to uniform the lithium ion flux inside the battery and partly comes from the formation of a rigid and highly conductive hybrid interfacial layer on the surface of lithium metal.This work not only provides a fresh way to stabilize lithium metal anode but also sheds light on further research for electrolyte optimization and design of lithium metal battery system. 展开更多
关键词 Hybrid electrolyte SLURRY ORGANIC-INORGANIC Lithium-ion transference number Lithium metal batteries
下载PDF
Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating 被引量:2
5
作者 Qiang Guo Wei Deng +7 位作者 Shengjie Xia Zibo Zhang Fei Zhao Binjie Hu Sasa Zhang Xufeng Zhou George Zheng Chen Zhaoping Liu 《Nano Research》 SCIE EI CSCD 2021年第10期3585-3597,共13页
Uncontrollable dendrite growth resulting from the non-uniform lithium ion(Li^(+))flux and volume expansion in lithium metal(Li)negative electrode leads to rapid performance degradation and serious safety problems of l... Uncontrollable dendrite growth resulting from the non-uniform lithium ion(Li^(+))flux and volume expansion in lithium metal(Li)negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries.Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li^(+)flux,the effective interaction distance between lithium ions and N-containing groups should be relatively small(down to nanometer scale)according to the Debye length law.Thus,it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li^(+)flux.In this work,porous carbon nitride microspheres(PCNMs)with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano-and micrometer scales on the Cu/Li foil.Physically,the three-dimensional(3D)porous framework is favorable for absorbing volume changes and guiding Li growth.Chemically,this coating layer can render a suitable interaction distance to effectively homogenize the Li^(+)flux and contribute to establishing a robust and stable solid electrolyte interphase(SEI)layer with Li-F,Li-N,and Li-O-rich contents based on the Debye length law.Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating,resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li||Cu and the Li||Li symmetric cells.Meanwhile,a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of~80%after more than 200 cycles at 1 C and achieved a remarkable rate capability.The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained~73%of the initial capacity after 150 cycles at 0.2 C. 展开更多
关键词 carbon nitride Debye length lithiophilic coating porous structure Li negative electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部