In this study,the gas-solid flow process in the blast furnace raceway is numerically simulated using coupled computational fluid dynamics and the discrete element method(CFD-DEM).The coke reaction kinetics data are im...In this study,the gas-solid flow process in the blast furnace raceway is numerically simulated using coupled computational fluid dynamics and the discrete element method(CFD-DEM).The coke reaction kinetics data are imported into the DEM model to reproduce the consumption process of each coke particle.The effects of inlet gas velocity and angle on the morphology of the raceway,coke consumption rate,coke bed temperature,and particle size distribution in the blast process are systematically investigated and analyzed.The results show that the consumption of coke particles promotes the formation of raceways during the blast process.At the same time,a coke mixture layer is produced at the edge of the raceway.The higher the inlet gas velocity,the thicker the coke mixture layer in the middle and upper parts of the raceway region,and the larger the proportion of small particles in the coke mixture layer.The effect of the inlet gas angle on the raceway region is less than the inlet gas velocity.However,with the increase in the inlet gas angle,the high-temperature region of the coke bed extends downward gradually,which is conducive to activating the hearth.展开更多
基金support by the National Natural Science Foundation of China(grant Nos.51874171,52074150,51974154).
文摘In this study,the gas-solid flow process in the blast furnace raceway is numerically simulated using coupled computational fluid dynamics and the discrete element method(CFD-DEM).The coke reaction kinetics data are imported into the DEM model to reproduce the consumption process of each coke particle.The effects of inlet gas velocity and angle on the morphology of the raceway,coke consumption rate,coke bed temperature,and particle size distribution in the blast process are systematically investigated and analyzed.The results show that the consumption of coke particles promotes the formation of raceways during the blast process.At the same time,a coke mixture layer is produced at the edge of the raceway.The higher the inlet gas velocity,the thicker the coke mixture layer in the middle and upper parts of the raceway region,and the larger the proportion of small particles in the coke mixture layer.The effect of the inlet gas angle on the raceway region is less than the inlet gas velocity.However,with the increase in the inlet gas angle,the high-temperature region of the coke bed extends downward gradually,which is conducive to activating the hearth.