期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China 被引量:1
1
作者 MA Luan WANG Guang-cai +3 位作者 SHI Zhe-ming GUO Yu-ying XU Qing-yu HUANG Xu-juan 《Journal of Groundwater Science and Engineering》 2016年第4期344-353,共10页
Abandoned mines are of high potential risk as they could be a large underground storage of pollutants(heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when g... Abandoned mines are of high potential risk as they could be a large underground storage of pollutants(heavy metals and organic wastes, etc.). Various physical, chemical and biological reactions would take place when groundwater flows into underground spaces, which makes abandoned mine a huge potential hazard to groundwater environment. The recovery of groundwater level is one of the key elements controlling the reactions and causing such hazards. This paper simulated groundwater level recovery processes in the abandoned mines, Fengfeng coalfield by using the computer program FEFLOW. The paper integrated the pipe flow model, "three zones" model and groundwater inrush(discharge) model in the simulation of groundwater in the complex laneway-aquifer system. Groundwater flow in the laneway systems was considered pipe flow and described in Bernoulli equation. The water-bearing medium(coal seam roof) overlying the laneway systems was divided into "three zones" composed of the caving zone, fissure zone and bending zone based on the disruption degrees of previous mining. Groundwater in the Ordovician limestone aquifer(bottom of coal seam) flowing into laneway systems was considered a major inrush/recharge source, and its flow rate was calculated by an inrush(discharge) model which was newly developed in this study and incorporated into FEFLOW. The results showed that it would take approximately 95 days for groundwater in abandoned mines to recover to regional groundwater level elevation, and the total amount of water filling up would be about 1.41195×10~7 m^3, which is consistent with the actual data. The study could be of theoretical and practical significance to mitigate abandoned mines' hazards and improve mine groundwater utilization. 展开更多
关键词 Abandoned mine Laneway system Aquifer media FEFLOW program Groundwater level recovery
下载PDF
The Role of Groundwater in the Salt Lakes in the Badain Jaran Desert,China 被引量:2
2
作者 GONG Yanping WANG Xusheng +1 位作者 CHEN Tianfei LU Huiting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期70-70,共1页
The Badain Jaran Desert is the second largest desert in China with tallest sand dunes on the earth.In contrast to the extremely dry climate,there are about 100 lakes spreading regularly over the depressions among high
关键词 Badain Jaran Desert salt lakes GROUNDWATER SPRINGS lake-stage SALINITY
下载PDF
Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert,China 被引量:7
3
作者 GONG Yanping WANG Xusheng +3 位作者 HU B Xiao ZHOU Yangxiao HAO Chunbo WAN Li 《Journal of Arid Land》 SCIE CSCD 2016年第5期694-706,共13页
Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed sa... Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD. 展开更多
关键词 arid region groundwater-fed lake spring water level change salinity
下载PDF
Hydrochemistry of the Natural Low p H Groundwater in the Coastal Aquifers near Beihai, China
4
作者 ZHOU Xun SHEN Ye +3 位作者 ZHANG Hua SONG Chao LI Jingwei LIU Yan 《Journal of Ocean University of China》 SCIE CAS 2015年第3期475-483,共9页
Natural weak acidic groundwater occurs in the unconfined and confined aquifers consisting of Quaternary and Neogene unconsolidated sediments near Beihai in southern Guangxi, China. Under natural conditions the groundw... Natural weak acidic groundwater occurs in the unconfined and confined aquifers consisting of Quaternary and Neogene unconsolidated sediments near Beihai in southern Guangxi, China. Under natural conditions the groundwater has low TDS(less than 200 mg L-1) and low concentrations of trace elements(less than 100 μg L-1) with a deceasing tend in contents of the Lanthanides(rare earth elements, less than 1 μg L-1) towards higher atomic number. The groundwater ranges in p H from 3.33 to 7.0 with an average value of 5.12(even lower than that of local rainwater, 5.88). p H values in the groundwater are a bit higher in rainy seasons than those in dry seasons and do not show significant increasing or decreasing trend with time. The average p H value in groundwater in the confined aquifers is even a bit lower than that in the unconfined aquifer. Comprehensive analyses of the groundwater environment suggest that H+ in the groundwater may be derived from dissociation of H2CO3, release of the absorbed H3O+ in clay layers and the acidity of rainwater. The H2CO3 in the groundwater may be formed by dissolution of CO2(g). Minerals in the unconsolidated sediment are predominated by quartz with small amount of clay minerals. The sediments undergoing a long-term weathering contain low levels of soluble constitutes. Lack of alkaline substances in the groundwater system is also helpful in the accumulation of acidity of the groundwater. 展开更多
关键词 acidic groundwater carbonic equilibrium coastal aquifer unconsolidated sediments trace elements
下载PDF
A discussion of up-flow springs 被引量:1
5
作者 ZHOU Xun WANG Xiao-cui +7 位作者 CAO Qin LONG Mi ZHENG Yu-hui GUO Juan SHEN Xiao-wei ZHANG Yu-qi TA Ming-ming CUI Xiang-fei 《Journal of Groundwater Science and Engineering》 2016年第4期279-283,共5页
Based on their genesis, springs are commonly classified as depression spring, contact spring, overflow spring and fault spring, etc. In addition, a kind of springs, i.e., up-flow spring, can be found in the field. An ... Based on their genesis, springs are commonly classified as depression spring, contact spring, overflow spring and fault spring, etc. In addition, a kind of springs, i.e., up-flow spring, can be found in the field. An aquifer is overlain by poorly-permeable unconsolidated sediments or relatively impervious formations. If the hydraulic head of the aquifer is higher than the land surface, groundwater may flow up to the ground surface through the local portion of the overlying aquicludes where the permeability is relatively good, and emerges as an up-flow spring. The common characteristics of an up-flow spring are discussed and summarized in this paper, and some examples of the up-flow springs are also given. Up-flow springs can flow up through local permeable zones in the overlying aquicludes rather than permeable faults. Although they cannot be found as frequently as depression springs, contact springs, overflow springs and fault springs etc., yet up-flow springs may occur in the form of normal-temperature springs, hot springs and salt springs. 展开更多
关键词 SPRING Hot spring Salt spring GROUNDWATER GENESIS
下载PDF
Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data
6
作者 Yanhong Zhan Huaming Guo +4 位作者 Yu Wang Ruimin Li Chuntang Hou Jingli Shao Yali Cui 《Journal of Earth Science》 SCIE CAS CSCD 2014年第3期563-574,共12页
Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding... Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding hydrogeochemical processes in aquifers. Spatial distribution and temporal evolution were analyzed on basis of monitoring data between 1975 and 2005. Results showed that major components in groundwater had increasing trends since 1970s. Major components in shallow groundwater increased more than those in deep one. In shallow groundwater of piedmont alluvial fan-recharge zone, concentrations of Na+, Ca2+, SO42- had great increasing trends, while other major components increased by less than 30%. There were great increasing trends in Na+, Cl-, SO42- concentrations in deep groundwater of central alluvial plain-intermediate zone, while other major components increased by no more than 20%. Deep groundwater from coast plain-discharge zone and piedmont alluvial fan-recharge zone showed no significant variations in major ion concentrations. In shallow groundwater, dissolution, evaporation and human activities played a major role in the increase in major components. However, groundwater mixture resulting from deep groundwater exploitation was believed to be the major factors for the increases in major components in deep groundwater of central alluvial plain-intermediate zone. 展开更多
关键词 Hebei Plain groundwater major component water-rock interaction EVOLUTION TEMPORAL spatial.
原文传递
Advances in research on earthquake fluids hydrogeology in China:a review 被引量:4
7
作者 Zheming Shi Guangcai Wang Chenglong Liu 《Earthquake Science》 2013年第6期415-425,共11页
Monitoring of subsurface fluid (underground fluid) is an important part of efforts for earthquake prediction in China. The nationwide network, which monitors groundwater level, water temperature, and radon and mercu... Monitoring of subsurface fluid (underground fluid) is an important part of efforts for earthquake prediction in China. The nationwide network, which monitors groundwater level, water temperature, and radon and mercury in groundwater, has been constructed in the last decades. Large amounts of abnormal fluid changes before and after major earthquakes have been recorded, providing precious data for research in earthquake sciences. Many studies have been done in earthquake fluid hydrogeology in order to probe the nature of the earthquake. Much progress in earthquake fluid hydrogeology has been made in the last decades. The paper provides a review of the advances in research on earthquake fluid hydrogeology over the last 40 years in China. It deals with the following five aspects: (1) an introduction to the development history of monitoring networks construction; (2) cases of different subsurface fluid changes recorded before some major earthquakes which occurred in the last decades; (3) characteristics of subsurface fluid changes following major earthquakes; (4) mechanism of subsurface fluid changes before and following earthquakes; (5) application of earthquake fluids in the hydrogeology field. 展开更多
关键词 EARTHQUAKE Subsurface fluid Monitoringwell networks Co-seismic PRECURSOR
下载PDF
Removing barometric pressure effects from groundwater level and identifying main influential constituents 被引量:3
8
作者 ZHAO Dan WANG GuangCai 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期129-136,共8页
Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eli... Changes in barometric pressure can affect the micro-dynamic state of groundwater level.The groundwater level data carry a lot of important information of tectonic activity and earthquakes.It is very significant to eliminate the barometric pressure effects from the groundwater level data in order to recognize seismic anomalies effectively.With the analysis of the main influential constituents of barometric pressure and their changes,we can have a better understanding of the changes of the aquifer medium,which can provide useful information for earthquake prediction.Taking the May 12,2008 Wenchuan earthquake as an example,this paper deals with the influence of barometric pressure on groundwater level based on observational data from Nanxi,Qionglai and Chaohu wells.The methods of the linear regression and the deconvolution regression were employed to remove the barometric pressure from the groundwater level data.The harmonic analysis and the spectral analysis were used to recognize the main influential waves of barometric pressure effect.A comparison was conducted on the main influential waves before and after the earthquake.The results showed that the main influential waves of barometric pressure effect changed and the amplitudes of all constituents also changed.This phenomenon may result from the characteristics of the influential constituents of pressure,or from the changes of the aquifer medium,which were caused by the earthquake. 展开更多
关键词 groundwater level barometric pressure effect water level correction influential constituents
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部