In the field of materials science and engineering,controlling over shape and crystal orientation remains a tremendous challenge.Herein,we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3(NVPF)materi...In the field of materials science and engineering,controlling over shape and crystal orientation remains a tremendous challenge.Herein,we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3(NVPF)material,based on surface energy evolution by partially replacing V3+with aliovalent Mn2+.Crystal growth direction and surface energy evolution,main factors in inducing the nano self-assembly of NVPF with different shapes and sizes,are revealed by high-resolution transmission electron microscope combined with density functional theory.Furthermore,NVPF with a two-dimensional nanosheet structure(NVPF-NS)exhibits the best rate capability with 68 mAh·g−1 of specific capacity at an ultrahigh rate of 20 C and cycle stability with 80.7%of capacity retention over 1,000 cycles at 1 C.More significantly,when matched with Se@reduced graphene oxide(rGO)anode,NVPF-NS//Se@rGO sodium-ion full cells display a remarkable long-term stability with a high capacity retention of 93.8%after 500 cycles at 0.5 C and−25°C.Consequently,experimental and theoretical calculation results manifest that NVPF-NS demonstrates such superior performances,which can be mainly due to its inherent crystal structure and preferential orientation growth of{001}facets.This work will promise insights into developing novel architectural design strategies for high-performance cathode materials in advanced sodium-ion batteries.展开更多
Cellulose/chitosan composite,as a mature commercial antibacterial dressing,is an important type of wound repair material.However,how to achieve the perfect compound of two components and improve antibacterial activity...Cellulose/chitosan composite,as a mature commercial antibacterial dressing,is an important type of wound repair material.However,how to achieve the perfect compound of two components and improve antibacterial activity is a major,lingering issue.In this study,a bifunctional group modified bacterial cellulose(DCBC)was prepared by carboxymethylation and selective oxidation.Further,the chitosan(CS)was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites(S-DCBC/CS).The aldehyde group can react with amino of CS by Schiff base reaction.The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of com-posites.The bacteriostatic rate of composites could be higher than 95%.Bacteria can be attracted onto the surface of composites,what we call it“directional adhesion antibacterial effects”.In particular,a kind of large animal wound model,deep II degree infected scald of Bama miniature pig,was used to research the antimicrobial and healing properties of materials.The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria.The wound healing rate of S-DCBC/CS was up to 80%after three weeks.The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.展开更多
The transportation of the proton,the smallest ion in nature,is rudimentary in chemical and biological reactions[1,2],such as photosynthesis[3],enzyme catalysis[4],and Brensted acid/base reactions[5],and currently even...The transportation of the proton,the smallest ion in nature,is rudimentary in chemical and biological reactions[1,2],such as photosynthesis[3],enzyme catalysis[4],and Brensted acid/base reactions[5],and currently even imperative in some devices,namely proton exchange membrane fuel cells(PEMFCs)[6,7].The processes of these elementary reactions,like proton transfer,appear to be astonishingly analogous.展开更多
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.91963118,52173246,and 52102213)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘In the field of materials science and engineering,controlling over shape and crystal orientation remains a tremendous challenge.Herein,we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3(NVPF)material,based on surface energy evolution by partially replacing V3+with aliovalent Mn2+.Crystal growth direction and surface energy evolution,main factors in inducing the nano self-assembly of NVPF with different shapes and sizes,are revealed by high-resolution transmission electron microscope combined with density functional theory.Furthermore,NVPF with a two-dimensional nanosheet structure(NVPF-NS)exhibits the best rate capability with 68 mAh·g−1 of specific capacity at an ultrahigh rate of 20 C and cycle stability with 80.7%of capacity retention over 1,000 cycles at 1 C.More significantly,when matched with Se@reduced graphene oxide(rGO)anode,NVPF-NS//Se@rGO sodium-ion full cells display a remarkable long-term stability with a high capacity retention of 93.8%after 500 cycles at 0.5 C and−25°C.Consequently,experimental and theoretical calculation results manifest that NVPF-NS demonstrates such superior performances,which can be mainly due to its inherent crystal structure and preferential orientation growth of{001}facets.This work will promise insights into developing novel architectural design strategies for high-performance cathode materials in advanced sodium-ion batteries.
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51973018,51773018)Beijing Munic-ipal Science and Technology Commission Projects(No.Z191100002019017)+3 种基金Key Research and Development Projects of Peo-ple’s Liberation Army(BWS17J036)National Key Research and Development Project(No.2019yfa0110603)Program for the Top Young Talents of Higher Learning Institutions of Hebei(BJ2021096)The fellowship of China Postdoctoral Science Foundation(No.2020T130005ZX).
文摘Cellulose/chitosan composite,as a mature commercial antibacterial dressing,is an important type of wound repair material.However,how to achieve the perfect compound of two components and improve antibacterial activity is a major,lingering issue.In this study,a bifunctional group modified bacterial cellulose(DCBC)was prepared by carboxymethylation and selective oxidation.Further,the chitosan(CS)was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites(S-DCBC/CS).The aldehyde group can react with amino of CS by Schiff base reaction.The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of com-posites.The bacteriostatic rate of composites could be higher than 95%.Bacteria can be attracted onto the surface of composites,what we call it“directional adhesion antibacterial effects”.In particular,a kind of large animal wound model,deep II degree infected scald of Bama miniature pig,was used to research the antimicrobial and healing properties of materials.The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria.The wound healing rate of S-DCBC/CS was up to 80%after three weeks.The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.
基金Financial supports from Scientific Research Projects in Colleges and Universities in Hebei Province,China(ZD2020409 and ZD2019307)the National Natural Science Foundation of China(21301048)+1 种基金the Fundamental Research Funds for the Central Universities(3142018010 and 3142019013)the Natural Science Foundation of Hebei Province of China(E2019508214)。
文摘The transportation of the proton,the smallest ion in nature,is rudimentary in chemical and biological reactions[1,2],such as photosynthesis[3],enzyme catalysis[4],and Brensted acid/base reactions[5],and currently even imperative in some devices,namely proton exchange membrane fuel cells(PEMFCs)[6,7].The processes of these elementary reactions,like proton transfer,appear to be astonishingly analogous.