High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of gr...High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.展开更多
The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba ...The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.展开更多
Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites ha...Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites have been collected over seven polar seasons in the Grove Mountains. All of these meteorites are owned and managed by the Chinese Antarctic Meteorite Depository (CAMD) at the Polar Research Institute of China (PRIC). In recent years, another 500 Antarctic meteorites have been classified and characterized based on mineralogy and petrology. In this work we examine four samples that have been identified as terrestrial, and a further 496 samples that have been confirmed as meteorites. These meteorites are further divided into different types:488 ordinary chondrites, one eucrite, one ureilite, one CM2 carbonaceous chondrite, one EH4 enstatite chondrite, one mesosiderite and three iron meteorites. The classification of meteorites not only provides an abundance of fundamental scientific data, but is also significant for introducing meteorites and related scientific knowledge to the publics particularly via the website of Chinese Resource-sharing Platform of Polar Samples for scientific research and education.展开更多
1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include duni...1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,展开更多
West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean.Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for unde...West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean.Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for understanding the tectonic framework and accretionary processes in West Junggar,Central Asian Orogenic Belt.A series of Early Carboniferous volcanic and intrusive rocks,namely,basaltic andesite,andesite,dacite,and diorite,occur in the Mayile area of southern West Junggar,northwestern China.Our new LA-ICPMS zircon U-Pb geochronological data reveal that diorite intruded at 334(±1)Ma,and that basaltic andesite was erupted at 334(±4)Ma.These intrusive and volcanic rocks are calc-alkaline,display moderate MgO(1.62%-4.18%)contents and Mg#values(40-59),and low Cr(14.5×10-6-47.2×10-6)and Ni(7.5×10-6-34.6×10-6)contents,and are characterized by enrichment in light rare-earth elements and large-ion lithophile elements and depletion in heavy rare-earth elements and high-field-strength elements,meaning that they belong to typical subduction-zone island-arc magma.The samples show low initial 87Sr/86Sr ratios(range of 0.703649-0.705008),positiveεNd(t)values(range of 4.8-6.2 and mean of 5.4),and young TDM Nd model ages ranging from 1016 to 616 Ma,indicating a magmatic origin from depleted mantle involving partial melting of 10%-25%garnet and spinel lherzolite.Combining our results with those of previous studies,we suggest that these rocks were formed as a result of northwestward subduction of the Junggar oceanic plate,which caused partial melting of sub-arc mantle.We conclude that intra-oceanic arc magmatism was extensive in West Junggar during the Early Carboniferous.展开更多
Correctly locating the tunnel lining cavity is extremely important tunnel quality inspection.High-accuracy imaging results are hard to obtain because conventional one-way wave migration is greatly aff ected by lateral...Correctly locating the tunnel lining cavity is extremely important tunnel quality inspection.High-accuracy imaging results are hard to obtain because conventional one-way wave migration is greatly aff ected by lateral velocity change and inclination limitation and because the diff racted wave cannot be accurately returned to the real spatial position of the lining cavity.This paper presents a tunnel lining cavity imaging method based on the groundpenetrating radar(GPR)reverse-time migration(RTM)algorithm.The principle of GPR RTM is described in detail using the electromagnetic wave equation.The finite-difference timedomain method is employed to calculate the backward extrapolation electromagnetic fi elds,and the zero-time imaging condition based on the exploding-reflector concept is used to obtain the RTM results.On this basis,the GPR RTM program is compiled and applied to the simulated and observed GPR data of a typical tunnel lining cavity GPR model and a physical lining cavity model.Comparison of RTM and Kirchhoff migration results reveals that the RTM can better converge the diff racted waves of steel bar and cavity to their true position and have higher resolution and better suppress the eff ect of multiple interference and clutter scattering waves.In addition,comparison of RTM results of diff erent degrees of noise shows that RTM has strong anti-interference ability and can be used for the accurate interpretation of radar profi le in a strong interference environment.展开更多
The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from s...The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from sandstones of the Ketapang Complex in SW Borneo range from 3298 Ma to 78 Ma,and show six major age populations:2476-2344 Ma,2016-1831 Ma,1296-759 Ma,455-406 Ma,262-210 Ma,and 187-78 Ma.The youngest age of these detrital zircons is 78 Ma,indicating that the maximum depositional age of the sandstones is Campanian.Permian-Late Cretaceous detrital zircons are interpreted as having been derived from the nearby Schwaner Mountains and the Permian-Triassic tin belt granitoids in Southeast Asia(SE Asia).Archean-Carboniferous detrital zircons have a continental Gondwana provenance,with their age spectra similar to those of northwestern Australia,indicating that these zircons could be derived from the orogenic belts and cratons in northwestern and central Australia.The provenance of these detrital zircons in this study indicates the SW Borneo block was located on the northwestern margin of Australia during the Paleozoic,in the region of the Banda Embayment.SW Borneo rifted from Australia and moved northward in the Early Jurassic,and this block was added to Sundaland in the Early Cretaceous.The Luconia-Dangerous Grounds continental fragment derived from East Asia collided with SW Borneo after subduction in the Cretaceous,which induced the widespread magmatism in the Schwaner Mountains in SW Borneo.展开更多
Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the...Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identification of the first lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientific research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classified into three groups: highland feldspathic breccia, mare basaltic breccia, and mingled(including fledspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a significant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface.展开更多
MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typica...MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.展开更多
As a highly efficient absorbing boundary condition, Perfectly Matched Layer (PML) has been widely used in Finite Difference Time Domain (FDTD) simulation of Ground Penetrating Radar (GPR) based on the first order elec...As a highly efficient absorbing boundary condition, Perfectly Matched Layer (PML) has been widely used in Finite Difference Time Domain (FDTD) simulation of Ground Penetrating Radar (GPR) based on the first order electromagnetic wave equation. However, the PML boundary condition is difficult to apply in GPR Finite Element Time Domain (FETD) simulation based on the second order electromagnetic wave equation. This paper developed a non-split perfectly matched layer (NPML) boundary condition for GPR FETD simulation based on the second order electromagnetic wave equation. Taking two-dimensional TM wave equation as an example, the second order frequency domain equation of GPR was derived according to the definition of complex extending coordinate transformation. Then it transformed into time domain by means of auxiliary differential equation method, and its FETD equation is derived based on Galerkin method. On this basis, a GPR FETD forward program based on NPML boundary condition is developed. The merits of NPML boundary condition are certified by compared with wave field snapshots, signal and reflection errors of homogeneous medium model with split and non-split PML boundary conditions. The comparison demonstrated that the NPML algorithm can reduce memory occupation and improve calculation efficiency. Furthermore, numerical simulation of a complex model verifies the good absorption effects of the NPML boundary condition in complex structures.展开更多
1 Introduction M16005 is a lunar meteorite found recently.Optical and microprobe examinations reveal that it is a well consolidated,polymict regolith breccia.M16005 is composed of abundant mineral fragments and a few
The reverse time migration(RTM)of ground penetrating radar(GPR)is usually implemented in its two-dimensional(2D)form,due to huge computational cost.However,2D RTM algorithm is difficult to focus the scattering signal ...The reverse time migration(RTM)of ground penetrating radar(GPR)is usually implemented in its two-dimensional(2D)form,due to huge computational cost.However,2D RTM algorithm is difficult to focus the scattering signal and produce a high precision subsurface image when the object is buried in a complicated subsurface environment.To better handle the multi-off set GPR data,we propose a three-dimensional(3D)prestack RTM algorithm.The high-order fi nite diff erence time domian(FDTD)method,with the accuracy of eighth-order in space and second-order in time,is applied to simulate the forward and backward extrapolation electromagnetic fi elds.In addition,we use the normalized correlation imaging condition to obtain pre-stack RTM result and the Laplace fi lter to suppress the low frequency noise generated during the correlation process.The numerical test of 3D simulated GPR data demonstrated that 3D RTM image shows excellent coincidence with the true model.Compared with 2D RTM image,the 3D RTM image can more clearly and accurately refl ect the 3D spatial distribution of the target,and the resolution of the imaging results is far better.Furthermore,the application of observed GPR data further validates the eff ectiveness of the proposed 3D GPR RTM algorithm,and its fi nal image can more reliably guide the subsequent interpretation.展开更多
Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes...Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.展开更多
An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
The chemical evolution and pressure-temperature conditions of subduction zone magmatism along ancient suture zones in orogenic belts can provide important information regarding plate convergence processes in paleo-oce...The chemical evolution and pressure-temperature conditions of subduction zone magmatism along ancient suture zones in orogenic belts can provide important information regarding plate convergence processes in paleo-oceans.Carboniferous magmatism in West Junggar is key to understanding the tectonothermal and subduction history of the Junggar Ocean,which was a branch of the Paleo-Asian Ocean,as well as the accretionary processes in the southwestern Central Asian Orogenic Belt(CAOB).We undertook a geochronological,mineralogical,geochemical,and Sr-Nd-Hf-Pb isotopic study of volcanic rocks from the Baikouquan area of West Junggar.We used these data to determine the petrogenesis,mantle source,and pressure-temperature conditions of these magmas,and further constrain the subduction and tectonic history of the Junggar Ocean.The studied volcanic rocks yielded zircon U-Pb ages of 342-337 Ma and are characterized by enrichments of large-ion lithophile elements(LILEs),and depletions in high-field-strength elements(HFSEs),indicative of an island arc affinity.The volcanic rocks have positiveƐNd(t)(5.83-7.04)andƐHf(t)(13.47-15.74)values,87Sr/86Sr(t)ratios of 0.704023-0.705658,and radiogenic 207Pb/204Pb(t)and 208Pb/204Pb(t)ratios at a given 206Pb/204Pb(t)ratio,indicative of a depleted mantle source contaminated by subduction-related materials.Geochemical modeling calculations indicate that≤1%of a subduction component comprising fluid and sediment melt could have generated the source of the parental melts of the Baikouquan volcanic rocks.Clinopyroxene phenocrysts in the volcanic rocks are classified as high-and low-Ti clinopyroxene,and pressure-temperature calculations suggest the host rocks formed at high temperatures(~1300℃)and shallow to moderate depths(<2 GPa).The magma was probably generated by hot and hydrous melting in a mantle wedge in response to subduction of young,hot oceanic lithosphere.The present results,combined with published data,suggest that the Baikouquan volcanic rocks record a transition in tectonic setting from normal cold to anomalous hot subduction of young oceanic lithosphere close to a mid-ocean ridge.This indicates ridge subduction began shortly after 337 Ma.Our results provide new insights into the tectonomagmatic evolution during intra-oceanic subduction prior to ridge subduction.展开更多
Zircon stability in silicate melts-which can be quantitatively constrained by laboratory measurements of zircon saturation-is important for understanding the evolution of magma.Although the original zircon saturation ...Zircon stability in silicate melts-which can be quantitatively constrained by laboratory measurements of zircon saturation-is important for understanding the evolution of magma.Although the original zircon saturation model proposed by Watson and Harrison(Earth Planet Sci Lett 64(2):295-304,1983) is widely cited and has been updated recently,the three main models currently in use may generate large uncertainties due to extrapolation beyond their respective calibrated ranges.This paper reviews and updates zircon saturation models developed with temperature and compositional parameters.All available data on zircon saturation ranging in composition from mafic to silicic(and/or peralkaline to peraluminous)at temperatures from 750 to 1400℃ were collected to develop two refined models(1 and 2) that may be applied to the wider range of compositions.Model 1 is given by lnCZr(melt)=(14.297±0.308)+(0.964 ± 0.066).M-(11113±374)/r,and model 2 given by lnCZr(melt)=(18.99±0.423)-(1.069±0.102)·lnG-(12288±593)/T,where CZr(melt) is the Zr concentration of the melt in ppm and parameters M [=(Na+K+2 Ca)/(Al·Si)](cation ratios) and G [=(3·Al2 O3+SiO2)/(Na2-O+K2 O+CaO+MgO+FeO)](molar proportions)represent the melt composition.The errors are at one sigma,and T is the temperature in Kelvin.Before applying these models to natural rocks,it is necessary to ensure that the zircon used to date is crystallized from the host magmatic rock.Assessment of the application of both new and old models to natural rocks suggests that model 1 may be the best for magmatic temperature estimates of metaluminous to peraluminous rocks and that model 2 may be the best for estimating magmatic temperatures of alkaline to peralkaline rocks.展开更多
The Dupal anomaly has attracted widespread attention since being discovered and is regarded as the most direct manifestation of mantle inhomogeneity at present. From the initially defined anomalies limited to the sout...The Dupal anomaly has attracted widespread attention since being discovered and is regarded as the most direct manifestation of mantle inhomogeneity at present. From the initially defined anomalies limited to the southern hemisphere to the global scale, the criteria for identifying anomalies defined by Pb isotopes have also been adjusted, providing an important method and reference for the study of the mantle evolution. Pearce and Peate(1995) proposed the method of NdHf isotope and element ratio to identify the Dupal anomaly. The Nd-Hf method also offers a possible way to discriminate the mantle region of arc magmatism through the correction of Nd in the subduction process. This paper introduces the concepts and determination methods of the Dupal anomaly, and reports new Hf isotopic data of MORB-type rocks with Dupal signature in the several Tethys ophiolites. Our results of Nd-Hf method are in good agreement with those of previous Pb isotope identification. Moreover, origins and their controversy of Dupal anomaly are reviewed, and possible internal connections between Dupal anomalies and the two Large Low Shear Velocity Provinces(LLSVPs) in the lower mantle are discussed in depth. Further studies on origin and evolution of the Dupal anomaly are suggested, especially using integrated approach of Hf-Nd and Pb isotopes.展开更多
The granites of ambiguous geodynamic mechanism in the Qin-Fang tectonic belt(SW China)were studied in detail based on petrological,element geochemical,zircon U-Pb geochronological,and Hf isotopic data.LA-ICPMS U-Pb an...The granites of ambiguous geodynamic mechanism in the Qin-Fang tectonic belt(SW China)were studied in detail based on petrological,element geochemical,zircon U-Pb geochronological,and Hf isotopic data.LA-ICPMS U-Pb analyses on zircon yield ages of 248-245 Ma for the granites from the Qin-Fang tectonic belt.The geochemical data show that they are high-K,calc-alkaline,and peraluminous series.Their ε_(Hf)(t)values are from -14.01 to -7.75 with two-stage model ages of 1.74-1.43 Ga.These data,integrated with low Al_(2)O_(3)/TiO_(2),Rb/Sr,Rb/Ba,and(Na_(2)O+K_(2)O)/(FeO^(T)+MgO+TiO_(2))ratios,and high CaO/Na_(2)O ratios for the granite,suggest an origin from psammite source which was contaminated by mantle-derived components.These observations,in combination with the age data and stratigraphic records in the Jinshajiang,Ailaoshan,and Hainan Island areas suggest that the granites were formed in a post-collision tectonic setting.The Qin-Fang tectonic belt was likely a branched ocean basin of the eastern Paleo-Tethys.展开更多
The global Hangenberg Crisis or Hangenberg Extinction is a mass extinction near the Devonian-Carboniferous boundary.Comprehensive research of petrology and geochemistry on the Devonian-Carboniferous boundary,as expose...The global Hangenberg Crisis or Hangenberg Extinction is a mass extinction near the Devonian-Carboniferous boundary.Comprehensive research of petrology and geochemistry on the Devonian-Carboniferous boundary,as exposed in the Nanbiancun auxiliary stratotype section,South China,elucidates paleoenvironmental changes and controls on marine strontium(^(87)Sr/^(86)Sr)and carbonate carbon(δ^(13)C_(carb))isotopes during the Hangenberg Crisis.The new^(87)Sr/^(86)Sr data reveal a regression in the Middle Siphonodella praesulcata Zone,while the Hangenberg Extinction was occurring in South China.Moreover,theδ^(13)C_(carb)data records a negative excursion near the base of the Middle Siphonodella praesulcata Zone that may have been connected with the Hangenberg Extinction.A positiveδ^(13)C_(carb)excursion,corresponding with the Upper Siphonodella praesulcata Zone,may reflect the effects of a vigorous biological pump.The magnitude of the Hangenberg Carbon Isotopic Excursion in peakδ^(13)carb values andδ^(13)C_(carb)gradient in carbonate Devonian-Carboniferous boundary sections of the South China Craton during the Hangenberg Crisis,are a function of depositional water depth and distance from the shore.The carbon cycling during the Hangenberg Carbon Isotopic Excursion had a much stronger impact on oceanic surface waters than on the deep ocean and theδ^(13)C_(carb)gradient of local seawater was likely caused by enhanced marine productivity,associated with biological recovery in platform sediments during the Hangenberg Crisis.展开更多
The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is ...The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB,and their place within the Rodinia supercontinent.However,to date,the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained,with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block.Here,we present a systematic study combining U-Pb geochronology,whole-rock geochemistry,and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block.The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma.These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity.The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs),but they are depleted in high field strength elements(HFSEs);these characteristics are similar to those of typical subduction-related magmatism.All samples show initial(^(87)Sr/^(86)Sr)(t)ratios between 0.705136 and 0.706745.Values forεNd(t)in the granitic gneisses are in the range from-5.7 to-1.2,which correspond to Nd model ages of 2.0-1.7 Ga,indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths.The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source,which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material.The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.展开更多
基金financially supported by the State Key Research Development Program of China(Grant No.2022YFF0800903)the National Natural Science Foundation of China(NSFC)(Grant Nos.42261144669 and 42273073)。
文摘High-silica granitoids record the formation and evolution of the continental crust.A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc,Southwest China.The intrusions consist of granites,granitic porphyries,and granodiorites.Zircon U-Pb age data indicate that the Weixi granitoids formed at 248-240 Ma and were coeval with silicic volcanic rocks of the Weixi arc.The Weixi granitoids are enriched in Rb,Th,and U,depleted in Ba,Sr,Nb,Ta,and Ti,and have high light/heavy rare earth element ratios and slightly negative Eu anomalies.The Weixi granitoids have negative ε_(Nd)(t)values(-9.8 to-7.8)and negative zircon ε_(Hf)(t)values(-12.02 to-5.11).The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material.The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction,respectively,and they record the formation of a continental arc in the central Sanjiang orogenic belt.
基金supported by the Guangxi Natural Science Foundation Program(Grant Nos.2021GXNSFAA220077,2021GXNSFBA220063)the Natural Science Foundation of China(Grant No.42073031)。
文摘The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.
基金supported by the National Natural Science Fund of China (Grant no. 41173077)the Scientific Research Project of Guangxi Colleges (Grant no. KY2015LX119)+1 种基金the National Science and Technology Infrastructure Platform Project (Grant no.2005DKA21406)the Key Laboratory of Geological Fluid and Geological Process at Universities of Guangxi Province
文摘Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites have been collected over seven polar seasons in the Grove Mountains. All of these meteorites are owned and managed by the Chinese Antarctic Meteorite Depository (CAMD) at the Polar Research Institute of China (PRIC). In recent years, another 500 Antarctic meteorites have been classified and characterized based on mineralogy and petrology. In this work we examine four samples that have been identified as terrestrial, and a further 496 samples that have been confirmed as meteorites. These meteorites are further divided into different types:488 ordinary chondrites, one eucrite, one ureilite, one CM2 carbonaceous chondrite, one EH4 enstatite chondrite, one mesosiderite and three iron meteorites. The classification of meteorites not only provides an abundance of fundamental scientific data, but is also significant for introducing meteorites and related scientific knowledge to the publics particularly via the website of Chinese Resource-sharing Platform of Polar Samples for scientific research and education.
基金funded by the National Natural Science Foundation of China (Grant No. 41173077)Chinese science and technology basic conditions platform project of Ministryof Science and Technology (2005DKA21406-9)Science and technology plan projects in guangxi(AD16450001)
文摘1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,
基金This study was jointly supported by the CAS"Light of West China"Program(2018-XBYJRC-003)the National Natural Science Foundation of China(41772059,92055208)+1 种基金the Guangxi Natural Science Foundation for Distinguished Young Scholars,China(2018GXNSFFA281009)the Fifth Bagui Scholar Innovation Project of Guangxi Zhuang Autonomous Region,China.We are grateful for editor's excellent editorial handling and constructive comments from two anonymous reviewers,which substantially improved the final presentation of the manuscript.This is a contribution to International Geoscience Programme(IGCP)662 and Guangxi Key Mineral Resources Deep Exploration Talent Highland.
文摘West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean.Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for understanding the tectonic framework and accretionary processes in West Junggar,Central Asian Orogenic Belt.A series of Early Carboniferous volcanic and intrusive rocks,namely,basaltic andesite,andesite,dacite,and diorite,occur in the Mayile area of southern West Junggar,northwestern China.Our new LA-ICPMS zircon U-Pb geochronological data reveal that diorite intruded at 334(±1)Ma,and that basaltic andesite was erupted at 334(±4)Ma.These intrusive and volcanic rocks are calc-alkaline,display moderate MgO(1.62%-4.18%)contents and Mg#values(40-59),and low Cr(14.5×10-6-47.2×10-6)and Ni(7.5×10-6-34.6×10-6)contents,and are characterized by enrichment in light rare-earth elements and large-ion lithophile elements and depletion in heavy rare-earth elements and high-field-strength elements,meaning that they belong to typical subduction-zone island-arc magma.The samples show low initial 87Sr/86Sr ratios(range of 0.703649-0.705008),positiveεNd(t)values(range of 4.8-6.2 and mean of 5.4),and young TDM Nd model ages ranging from 1016 to 616 Ma,indicating a magmatic origin from depleted mantle involving partial melting of 10%-25%garnet and spinel lherzolite.Combining our results with those of previous studies,we suggest that these rocks were formed as a result of northwestward subduction of the Junggar oceanic plate,which caused partial melting of sub-arc mantle.We conclude that intra-oceanic arc magmatism was extensive in West Junggar during the Early Carboniferous.
基金supported by the National Natural Science Foundation of China (Nos. 41764005, 41604039, 41604102, and 41574078)Guangxi Natural Science Foundation of China (Nos. 2016GXNSFBA380082 and 2016GXNSFBA380215)+2 种基金Guangxi Young and Middle-aged Teacher Basic Ability Improvement Project (No. KY2016YB199)Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials Project (No. GXYSXTZX2017-II-5)Guangxi Scholarship Fund of Guangxi Education Department。
文摘Correctly locating the tunnel lining cavity is extremely important tunnel quality inspection.High-accuracy imaging results are hard to obtain because conventional one-way wave migration is greatly aff ected by lateral velocity change and inclination limitation and because the diff racted wave cannot be accurately returned to the real spatial position of the lining cavity.This paper presents a tunnel lining cavity imaging method based on the groundpenetrating radar(GPR)reverse-time migration(RTM)algorithm.The principle of GPR RTM is described in detail using the electromagnetic wave equation.The finite-difference timedomain method is employed to calculate the backward extrapolation electromagnetic fi elds,and the zero-time imaging condition based on the exploding-reflector concept is used to obtain the RTM results.On this basis,the GPR RTM program is compiled and applied to the simulated and observed GPR data of a typical tunnel lining cavity GPR model and a physical lining cavity model.Comparison of RTM and Kirchhoff migration results reveals that the RTM can better converge the diff racted waves of steel bar and cavity to their true position and have higher resolution and better suppress the eff ect of multiple interference and clutter scattering waves.In addition,comparison of RTM results of diff erent degrees of noise shows that RTM has strong anti-interference ability and can be used for the accurate interpretation of radar profi le in a strong interference environment.
基金Supported by the National Natural Science Foundation of China(Nos.41803038,41903005)the Guangxi Natural Science Foundation(No.2018GXNSFAA138193)the China Postdoctoral Science Foundation(No.2019M662458)。
文摘The Southwest Borneo(SW Borneo)block belongs to Sundaland and is the oldest continental fragment of Borneo that is believed to derive from the Gondwana land.The U-Pb isotopic dating ages of 113 detrital zircons from sandstones of the Ketapang Complex in SW Borneo range from 3298 Ma to 78 Ma,and show six major age populations:2476-2344 Ma,2016-1831 Ma,1296-759 Ma,455-406 Ma,262-210 Ma,and 187-78 Ma.The youngest age of these detrital zircons is 78 Ma,indicating that the maximum depositional age of the sandstones is Campanian.Permian-Late Cretaceous detrital zircons are interpreted as having been derived from the nearby Schwaner Mountains and the Permian-Triassic tin belt granitoids in Southeast Asia(SE Asia).Archean-Carboniferous detrital zircons have a continental Gondwana provenance,with their age spectra similar to those of northwestern Australia,indicating that these zircons could be derived from the orogenic belts and cratons in northwestern and central Australia.The provenance of these detrital zircons in this study indicates the SW Borneo block was located on the northwestern margin of Australia during the Paleozoic,in the region of the Banda Embayment.SW Borneo rifted from Australia and moved northward in the Early Jurassic,and this block was added to Sundaland in the Early Cretaceous.The Luconia-Dangerous Grounds continental fragment derived from East Asia collided with SW Borneo after subduction in the Cretaceous,which induced the widespread magmatism in the Schwaner Mountains in SW Borneo.
基金funded by the National Natural Science Foundation of China(Grant nos.41173077 and 40673055)the National Natural Resources Platform Project of China(Grant no.2005DKA21406-1)the Director Fund Project of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Grant no.13A-01-02)
文摘Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identification of the first lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientific research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classified into three groups: highland feldspathic breccia, mare basaltic breccia, and mingled(including fledspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a significant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface.
基金was supported by the Natural Science Foundation of China(Grant no.41173077)the Director Fund of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Grant no.13-A-01-02)
文摘MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.
文摘As a highly efficient absorbing boundary condition, Perfectly Matched Layer (PML) has been widely used in Finite Difference Time Domain (FDTD) simulation of Ground Penetrating Radar (GPR) based on the first order electromagnetic wave equation. However, the PML boundary condition is difficult to apply in GPR Finite Element Time Domain (FETD) simulation based on the second order electromagnetic wave equation. This paper developed a non-split perfectly matched layer (NPML) boundary condition for GPR FETD simulation based on the second order electromagnetic wave equation. Taking two-dimensional TM wave equation as an example, the second order frequency domain equation of GPR was derived according to the definition of complex extending coordinate transformation. Then it transformed into time domain by means of auxiliary differential equation method, and its FETD equation is derived based on Galerkin method. On this basis, a GPR FETD forward program based on NPML boundary condition is developed. The merits of NPML boundary condition are certified by compared with wave field snapshots, signal and reflection errors of homogeneous medium model with split and non-split PML boundary conditions. The comparison demonstrated that the NPML algorithm can reduce memory occupation and improve calculation efficiency. Furthermore, numerical simulation of a complex model verifies the good absorption effects of the NPML boundary condition in complex structures.
基金supported by the National Natural Foundation of China (No. 41173077)Science and Technology Program of Guangxi (No. AD16450001)
文摘1 Introduction M16005 is a lunar meteorite found recently.Optical and microprobe examinations reveal that it is a well consolidated,polymict regolith breccia.M16005 is composed of abundant mineral fragments and a few
基金This work is supported by the National Natural Science Foundation of China(No.41604039,41604102,41764005,41574078)Guangxi Natural Science Foundation project(No.2020GXNSFAA159121,2016GXNSFBA380215).
文摘The reverse time migration(RTM)of ground penetrating radar(GPR)is usually implemented in its two-dimensional(2D)form,due to huge computational cost.However,2D RTM algorithm is difficult to focus the scattering signal and produce a high precision subsurface image when the object is buried in a complicated subsurface environment.To better handle the multi-off set GPR data,we propose a three-dimensional(3D)prestack RTM algorithm.The high-order fi nite diff erence time domian(FDTD)method,with the accuracy of eighth-order in space and second-order in time,is applied to simulate the forward and backward extrapolation electromagnetic fi elds.In addition,we use the normalized correlation imaging condition to obtain pre-stack RTM result and the Laplace fi lter to suppress the low frequency noise generated during the correlation process.The numerical test of 3D simulated GPR data demonstrated that 3D RTM image shows excellent coincidence with the true model.Compared with 2D RTM image,the 3D RTM image can more clearly and accurately refl ect the 3D spatial distribution of the target,and the resolution of the imaging results is far better.Furthermore,the application of observed GPR data further validates the eff ectiveness of the proposed 3D GPR RTM algorithm,and its fi nal image can more reliably guide the subsequent interpretation.
文摘Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.
基金Financially supported by the program SINOPROBE-04-02the Special Funds for Sciences and Technology Research of Public Welfare Trades 201011054the research grant of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration 15-140-27-13
文摘An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
基金supported financially by funds from the National Natural Science Foundation of China (92055208,41888101)the Guangxi Science Innovation Base Construction Foundation (GuikeZY21195031)+2 种基金the Fifth Bagui Scholar Innovation Project of Guangxi Province (to XU Jifeng)Gansu Province Youth Science and Technology Fund Project (23JRRG0017)Guangxi Young and Middle-aged Teachers'Basic Competence Enhancement Program (2023KY0270).
文摘The chemical evolution and pressure-temperature conditions of subduction zone magmatism along ancient suture zones in orogenic belts can provide important information regarding plate convergence processes in paleo-oceans.Carboniferous magmatism in West Junggar is key to understanding the tectonothermal and subduction history of the Junggar Ocean,which was a branch of the Paleo-Asian Ocean,as well as the accretionary processes in the southwestern Central Asian Orogenic Belt(CAOB).We undertook a geochronological,mineralogical,geochemical,and Sr-Nd-Hf-Pb isotopic study of volcanic rocks from the Baikouquan area of West Junggar.We used these data to determine the petrogenesis,mantle source,and pressure-temperature conditions of these magmas,and further constrain the subduction and tectonic history of the Junggar Ocean.The studied volcanic rocks yielded zircon U-Pb ages of 342-337 Ma and are characterized by enrichments of large-ion lithophile elements(LILEs),and depletions in high-field-strength elements(HFSEs),indicative of an island arc affinity.The volcanic rocks have positiveƐNd(t)(5.83-7.04)andƐHf(t)(13.47-15.74)values,87Sr/86Sr(t)ratios of 0.704023-0.705658,and radiogenic 207Pb/204Pb(t)and 208Pb/204Pb(t)ratios at a given 206Pb/204Pb(t)ratio,indicative of a depleted mantle source contaminated by subduction-related materials.Geochemical modeling calculations indicate that≤1%of a subduction component comprising fluid and sediment melt could have generated the source of the parental melts of the Baikouquan volcanic rocks.Clinopyroxene phenocrysts in the volcanic rocks are classified as high-and low-Ti clinopyroxene,and pressure-temperature calculations suggest the host rocks formed at high temperatures(~1300℃)and shallow to moderate depths(<2 GPa).The magma was probably generated by hot and hydrous melting in a mantle wedge in response to subduction of young,hot oceanic lithosphere.The present results,combined with published data,suggest that the Baikouquan volcanic rocks record a transition in tectonic setting from normal cold to anomalous hot subduction of young oceanic lithosphere close to a mid-ocean ridge.This indicates ridge subduction began shortly after 337 Ma.Our results provide new insights into the tectonomagmatic evolution during intra-oceanic subduction prior to ridge subduction.
基金financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB18010402)the National Natural Science Foundation of China (Grant No. 41702224)the Pearl River Talent Plan of Guangdong Province
文摘Zircon stability in silicate melts-which can be quantitatively constrained by laboratory measurements of zircon saturation-is important for understanding the evolution of magma.Although the original zircon saturation model proposed by Watson and Harrison(Earth Planet Sci Lett 64(2):295-304,1983) is widely cited and has been updated recently,the three main models currently in use may generate large uncertainties due to extrapolation beyond their respective calibrated ranges.This paper reviews and updates zircon saturation models developed with temperature and compositional parameters.All available data on zircon saturation ranging in composition from mafic to silicic(and/or peralkaline to peraluminous)at temperatures from 750 to 1400℃ were collected to develop two refined models(1 and 2) that may be applied to the wider range of compositions.Model 1 is given by lnCZr(melt)=(14.297±0.308)+(0.964 ± 0.066).M-(11113±374)/r,and model 2 given by lnCZr(melt)=(18.99±0.423)-(1.069±0.102)·lnG-(12288±593)/T,where CZr(melt) is the Zr concentration of the melt in ppm and parameters M [=(Na+K+2 Ca)/(Al·Si)](cation ratios) and G [=(3·Al2 O3+SiO2)/(Na2-O+K2 O+CaO+MgO+FeO)](molar proportions)represent the melt composition.The errors are at one sigma,and T is the temperature in Kelvin.Before applying these models to natural rocks,it is necessary to ensure that the zircon used to date is crystallized from the host magmatic rock.Assessment of the application of both new and old models to natural rocks suggests that model 1 may be the best for magmatic temperature estimates of metaluminous to peraluminous rocks and that model 2 may be the best for estimating magmatic temperatures of alkaline to peralkaline rocks.
基金funded by the National Key Research and Development Project of China (Project 2020YFA0714800)。
文摘The Dupal anomaly has attracted widespread attention since being discovered and is regarded as the most direct manifestation of mantle inhomogeneity at present. From the initially defined anomalies limited to the southern hemisphere to the global scale, the criteria for identifying anomalies defined by Pb isotopes have also been adjusted, providing an important method and reference for the study of the mantle evolution. Pearce and Peate(1995) proposed the method of NdHf isotope and element ratio to identify the Dupal anomaly. The Nd-Hf method also offers a possible way to discriminate the mantle region of arc magmatism through the correction of Nd in the subduction process. This paper introduces the concepts and determination methods of the Dupal anomaly, and reports new Hf isotopic data of MORB-type rocks with Dupal signature in the several Tethys ophiolites. Our results of Nd-Hf method are in good agreement with those of previous Pb isotope identification. Moreover, origins and their controversy of Dupal anomaly are reviewed, and possible internal connections between Dupal anomalies and the two Large Low Shear Velocity Provinces(LLSVPs) in the lower mantle are discussed in depth. Further studies on origin and evolution of the Dupal anomaly are suggested, especially using integrated approach of Hf-Nd and Pb isotopes.
基金financially supported by the National Natural Science Foundation of China(No.42372102)the Guangxi Natural Science Foundation Program(Nos.2017GXNSFAA198209 and 2022GXNSFAA035620)the Guangxi Key R&D Program(No.AB22035045).
文摘The granites of ambiguous geodynamic mechanism in the Qin-Fang tectonic belt(SW China)were studied in detail based on petrological,element geochemical,zircon U-Pb geochronological,and Hf isotopic data.LA-ICPMS U-Pb analyses on zircon yield ages of 248-245 Ma for the granites from the Qin-Fang tectonic belt.The geochemical data show that they are high-K,calc-alkaline,and peraluminous series.Their ε_(Hf)(t)values are from -14.01 to -7.75 with two-stage model ages of 1.74-1.43 Ga.These data,integrated with low Al_(2)O_(3)/TiO_(2),Rb/Sr,Rb/Ba,and(Na_(2)O+K_(2)O)/(FeO^(T)+MgO+TiO_(2))ratios,and high CaO/Na_(2)O ratios for the granite,suggest an origin from psammite source which was contaminated by mantle-derived components.These observations,in combination with the age data and stratigraphic records in the Jinshajiang,Ailaoshan,and Hainan Island areas suggest that the granites were formed in a post-collision tectonic setting.The Qin-Fang tectonic belt was likely a branched ocean basin of the eastern Paleo-Tethys.
基金financially supported by the National Natural Science Foundation of China(92055208)Guangxi Natural Science Foundation for Distinguished Young Scholars(2018GXNSFFA281009)+3 种基金the CAS‘Light of West China’Program(2018-XBYJRC-003)the Guangxi Science Innovation Base Construction Foundation(Guike ZY21195031)the Fifth Bagui Scholar Innovation Project of the Guangxi Province(to Xu Jifeng)the grant of the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology(MGQNLM201901)。
文摘The global Hangenberg Crisis or Hangenberg Extinction is a mass extinction near the Devonian-Carboniferous boundary.Comprehensive research of petrology and geochemistry on the Devonian-Carboniferous boundary,as exposed in the Nanbiancun auxiliary stratotype section,South China,elucidates paleoenvironmental changes and controls on marine strontium(^(87)Sr/^(86)Sr)and carbonate carbon(δ^(13)C_(carb))isotopes during the Hangenberg Crisis.The new^(87)Sr/^(86)Sr data reveal a regression in the Middle Siphonodella praesulcata Zone,while the Hangenberg Extinction was occurring in South China.Moreover,theδ^(13)C_(carb)data records a negative excursion near the base of the Middle Siphonodella praesulcata Zone that may have been connected with the Hangenberg Extinction.A positiveδ^(13)C_(carb)excursion,corresponding with the Upper Siphonodella praesulcata Zone,may reflect the effects of a vigorous biological pump.The magnitude of the Hangenberg Carbon Isotopic Excursion in peakδ^(13)carb values andδ^(13)C_(carb)gradient in carbonate Devonian-Carboniferous boundary sections of the South China Craton during the Hangenberg Crisis,are a function of depositional water depth and distance from the shore.The carbon cycling during the Hangenberg Carbon Isotopic Excursion had a much stronger impact on oceanic surface waters than on the deep ocean and theδ^(13)C_(carb)gradient of local seawater was likely caused by enhanced marine productivity,associated with biological recovery in platform sediments during the Hangenberg Crisis.
基金supported by the National Natural Science Foundation of China(92055208,41772059,42174080)the CAS"Light of West China"Program(2018-XBYJRC-003)+3 种基金the Guangxi Natural Science Foundation for Distinguished Young Scholars,China(2018GXNSFFA281009)the Guangxi Science Innovation Base Construction Foundation(GuikeZY21195031)the Guangxi Natural Science Foundation for Innovation Research Team Program(GXNSFGA380004)the Fifth Bagui Scholar Innovation Project of Guangxi Zhuang Autonomous Region,China。
文摘The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB,and their place within the Rodinia supercontinent.However,to date,the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained,with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block.Here,we present a systematic study combining U-Pb geochronology,whole-rock geochemistry,and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block.The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma.These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity.The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs),but they are depleted in high field strength elements(HFSEs);these characteristics are similar to those of typical subduction-related magmatism.All samples show initial(^(87)Sr/^(86)Sr)(t)ratios between 0.705136 and 0.706745.Values forεNd(t)in the granitic gneisses are in the range from-5.7 to-1.2,which correspond to Nd model ages of 2.0-1.7 Ga,indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths.The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source,which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material.The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma.