In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluat...In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluation of the energy storage capability of a dielectric.In this work,high recyclable energy density and responsivity,i.e.,W_(rec)=161.1 J·cm^(-3) and ξ=373.8 J·(kV·m^(2))^(-1),have been simultaneously achieved in a prototype perovskite dielectric,BaTiO_(3),which is integrated on Si at 500℃ in the form of a submicron thick film.This ferroelectric film features a multi-scale polar structure consisting of ferroelectric grains with different orientations and inner-grain ferroelastic domains.A LaNiO_(3) buffer layer is used to induce a{001}textured,columnar nanograin microstructure,while an elevated deposition temperature promotes lateral growth of the nanograins(in-plane diameter increases from~10-20 nm at lower temperatures to~30 nm).These preferably oriented and periodically regulated nanograins have resulted in a small remnant polarization and a delayed polarization saturation in the film’s P-E behavior,leading to a high recyclable energy density.Meanwhile,an improved polarizability/dielectric constant of the BaTiO_(3) film has produced a much larger maximum polarization than those deposited at lower temperatures at the same electric field,leading to a record-breaking responsivity for this simple perovskite.展开更多
In this work,dielectric ultracapacitors were designed and fabricated using a combination of phase boundary and nanograin strategies.These ultracapacitors are based on submicron-thick Ba(Zr_(0.2)Ti_(0.8))O_(3) ferroele...In this work,dielectric ultracapacitors were designed and fabricated using a combination of phase boundary and nanograin strategies.These ultracapacitors are based on submicron-thick Ba(Zr_(0.2)Ti_(0.8))O_(3) ferroelectric films sputterdeposited on Si at 500℃.With a composition near a polymorphic phase boundary(PPB),a compressive strain,and a high nucleation rate due to the lowered deposition temperature,these films exhibit a columnar nanograined microstructure with gradient phases along the growth direction.Such a microstructure presents three-dimensional polarization inhomogeneities on the nanoscale,thereby significantly delaying the saturation of the overall electric polarization.Consequently,a pseudolinear,ultraslim polarization(P)-electric field(E)hysteresis loop was obtained,featuring a high maximum applicable electric field(~5.7 MV/cm),low remnant polarization(~5.2μC/cm^(2))and high maximum polarization(~92.1μC/cm^(2)).This P-E loop corresponds to a high recyclable energy density(W_(rec)~208 J/cm^(3))and charge‒discharge efficiency(~88%).An indepth electron microscopy study revealed that the gradient ferroelectric phases consisted of tetragonal(T)and rhombohedral(R)polymorphs along the growth direction of the film.The T-rich phase is abundant near the bottom of the film and gradually transforms into the R-rich phase near the surface.These films also exhibited a high Curie temperature of~460℃and stable capacitive energy storage up to 200℃.These results suggest a feasible pathway for the design and fabrication of high-performance dielectric film capacitors.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51772175 and 52002192)Natural Science Foundation of Shandong Province(Grant Nos.ZR2022ZD39,ZR2022ME075,ZR2020QE042,ZR2022ME031,and ZR2022QB138)+3 种基金the Science,Education and Industry Integration Pilot Projects of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2022GH018 and 2022PY055)the Jinan City Science and Technology Bureau(Grant No.2021GXRC055)the Education Department of Hunan Province/Xiangtan University(Grant No.KZ0807969)funding for top talents at Qilu University of Technology(Shandong Academy of Sciences).
文摘In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluation of the energy storage capability of a dielectric.In this work,high recyclable energy density and responsivity,i.e.,W_(rec)=161.1 J·cm^(-3) and ξ=373.8 J·(kV·m^(2))^(-1),have been simultaneously achieved in a prototype perovskite dielectric,BaTiO_(3),which is integrated on Si at 500℃ in the form of a submicron thick film.This ferroelectric film features a multi-scale polar structure consisting of ferroelectric grains with different orientations and inner-grain ferroelastic domains.A LaNiO_(3) buffer layer is used to induce a{001}textured,columnar nanograin microstructure,while an elevated deposition temperature promotes lateral growth of the nanograins(in-plane diameter increases from~10-20 nm at lower temperatures to~30 nm).These preferably oriented and periodically regulated nanograins have resulted in a small remnant polarization and a delayed polarization saturation in the film’s P-E behavior,leading to a high recyclable energy density.Meanwhile,an improved polarizability/dielectric constant of the BaTiO_(3) film has produced a much larger maximum polarization than those deposited at lower temperatures at the same electric field,leading to a record-breaking responsivity for this simple perovskite.
基金the financial support from the Natural Science Foundation of Shandong Province(Nos.ZR2022ZD39,ZR2022ME031,ZR2023QB119,ZR2023QE138,ZR2020QE042,and ZR2022QB138)the National Natural Science Foundation of China(No.52002192)+3 种基金the Science,Education and Industry Integration Pilot Projects of Qilu University of Technology(Shandong Academy of Sciences)(Nos.2022GH018,2023PX062,and 2023PX041)the Training Plan Project of Qilu University of Technology(Nos.2023RCKY093 and 2023RCKY095)the support from the Jinan City Science and Technology Bureau(No.2021GXRC055)the Education Department of Hunan Province/Xiangtan University(No.KZ0807969)。
文摘In this work,dielectric ultracapacitors were designed and fabricated using a combination of phase boundary and nanograin strategies.These ultracapacitors are based on submicron-thick Ba(Zr_(0.2)Ti_(0.8))O_(3) ferroelectric films sputterdeposited on Si at 500℃.With a composition near a polymorphic phase boundary(PPB),a compressive strain,and a high nucleation rate due to the lowered deposition temperature,these films exhibit a columnar nanograined microstructure with gradient phases along the growth direction.Such a microstructure presents three-dimensional polarization inhomogeneities on the nanoscale,thereby significantly delaying the saturation of the overall electric polarization.Consequently,a pseudolinear,ultraslim polarization(P)-electric field(E)hysteresis loop was obtained,featuring a high maximum applicable electric field(~5.7 MV/cm),low remnant polarization(~5.2μC/cm^(2))and high maximum polarization(~92.1μC/cm^(2)).This P-E loop corresponds to a high recyclable energy density(W_(rec)~208 J/cm^(3))and charge‒discharge efficiency(~88%).An indepth electron microscopy study revealed that the gradient ferroelectric phases consisted of tetragonal(T)and rhombohedral(R)polymorphs along the growth direction of the film.The T-rich phase is abundant near the bottom of the film and gradually transforms into the R-rich phase near the surface.These films also exhibited a high Curie temperature of~460℃and stable capacitive energy storage up to 200℃.These results suggest a feasible pathway for the design and fabrication of high-performance dielectric film capacitors.