期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting
1
作者 Zi-Xin Ge Yu Ding +6 位作者 Tian-Jiao Wang Feng Shi Pu-Jun Jin Pei Chen Bin He Shi-Bin Yin Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期209-216,I0006,共9页
Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to syn... Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system. 展开更多
关键词 Holey platinum nanotubes Chemical functionalization Formic acid oxidation reaction Hydrogen evolution reaction Water splitting
下载PDF
Metal-organic interface engineering for boosting the electroactivity of Pt nanodendrites for hydrogen production 被引量:4
2
作者 Juan Bai Nan Jia +4 位作者 Pujun Jin Pei Chen Jia-Xing Jiang Jing-Hui Zeng Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期105-112,共8页
Recently, the surface chemical functionalization and morphology control of precious metal nanostructures have been recognized as two efficient strategies for improving their electroactivity and/or selectivity. In this... Recently, the surface chemical functionalization and morphology control of precious metal nanostructures have been recognized as two efficient strategies for improving their electroactivity and/or selectivity. In this work, 1, 10-phenanthroline monohydrate(PM) functionalized Pt nanodendrites(Pt-NDs) on carbon cloth(CC)(denoted as PM@Pt-NDs/CC) and polyethylenimine(PEI) functionalized Pt-NDs on CC(denoted as PEI@Pt-NDs/CC) are successfully achieved by immersing Pt-NDs/CC into PM and PEI aqueous solutions, respectively. PEI functionalization of Pt-NDs/CC improves its electroactivity for hydrogen evolution reaction(HER) due to local proton enrichment whereas PM functionalization of Pt-NDs/CC improves its electroactivity for formic acid oxidation reaction(FAOR) by facilitating dehydrogenation pathway. With such high activity, a two-electrode electrolyzer is assembled using PM@Pt-NDs/CC as the anodic electrocatalyst and PEI@Pt-NDs/CC as the cathodic electrocatalyst for electrochemical reforming of formic acid, which only requires 0.45 V voltage to achieve the current density of 10 mA cm^(-1) for highpurity hydrogen production, much lower than conventional water electrolysis(1.59 V). The work presents an example of interfacial engineering enhancing electrocatalytic activity and indicates that electrochemical reforming of formic acid is an energy-saving electrochemical method for high-purity hydrogen production. 展开更多
关键词 Pt nanodendrites Chemical functionalization Catalytic activity Hydrogen evolution reaction Formic acid oxidation reaction
下载PDF
Sol-gel Synthesis and Photoluminescence of InP Nanocrystals Embedded in Silica Glasses 被引量:2
3
作者 YANG He-qing HUANG Da-ming YAO Xi 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期247-247,共1页
III-Vsemiconductor nanocrystals rarely exist as spherical inclusions inside glasses, due to difficulties during their preparation, such as high toxic reagents or fast oxidation under usual glass technology temperature... III-Vsemiconductor nanocrystals rarely exist as spherical inclusions inside glasses, due to difficulties during their preparation, such as high toxic reagents or fast oxidation under usual glass technology temperatures. In this article a sol-gel method for synthesis of InP nanocrystals embedded in silica glasses was described. Gels were synthesized by hydrolysis of a complex solution of Si(OC 2 H 5 ) 4 , InCl 3 4H 2 O and PO(OC 2 H 5 ) 3 . Then, the gels were heated at 600 o C in the presence of H 2 gas to form fine cubic InP crystallites. Raman spectrum showed InP longitudinal-optic mode (342cm -1 ) and transverse-optic mode (303cm -1 ). The size of InP nanocrystals was found to be from 2 to 8 nm in diameter by transmission electron microscopy. A strong photoluminescence with peaks at, 606, 730nm 856 nm was observed from 3InP/100SiO 2 nanocompositions. The temperature-and excitation power-dependent PL spectra from the nanocomposition are measured in order to confirm the origin of the PL spectra. These behaviors of the three peaks emissions suggest that 606, 733, and 856 nm emissions do not have the same origin. The PL with peak at 856nm arise from the cubic InP nanocrystallites embedded in the SiO 2 gel glasses. The 605 and 732 nm emissions may arise from the SiO 2 gel glass matrix or the interface between the InP crystallite core and SiO2 glass matrix. 展开更多
关键词 InP nanocrystals nanocompositions Sol-gel method photoluminescence and spectrum
下载PDF
Synthesis and Structure of a Titanocene-ferrocenyl Complex
4
作者 王高峰 高子伟 +4 位作者 孙述文 高玲香 董顺福 刘昭铁 毋登辉 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第3期271-278,共8页
A titanocene-ferrocenyl complex, (5-ferrocenyl-2-hydroxybenzenecarboxylato- O,O′)-bis(methylcyclopentadienyl)titanium(IV) 4, and an unexpected ionic complex, [C7H8NO3]- [(C5H5)Fe(C5H4)SO3]·H2O3 were sy... A titanocene-ferrocenyl complex, (5-ferrocenyl-2-hydroxybenzenecarboxylato- O,O′)-bis(methylcyclopentadienyl)titanium(IV) 4, and an unexpected ionic complex, [C7H8NO3]- [(C5H5)Fe(C5H4)SO3]·H2O3 were synthesized and characterized by IR, ^1H NMR and elemental analysis. Compound 3 is of triclinic, space group P1 with a = 5.954(2), b = 13.208(5), c = 13.252(5) A, α = 60.993(7),β = 84.342(8),γ = 86.933(8)°, Z = 2, V = 906.8(6)A^3, Dc = 1.601 g/cm^3, μ(MoKα) = 0.987 mm^-1, F(000) = 452, the final R = 0.0647 and wR = 0.1333 for 2311 observed reflections (I 〉 2σ(I)). Compound 4 belongs to the monoclinic system, space group P2 1/c with α = 14.3310(9), b = 12.5065(8), c = 12.9406(10) A, β = 95.101(4)°, Z = 4, V = 2310.2(3) A^3, Dc = 1.513 g/cm^3, μ(MoKα) = 1.004 mm^-1, F(000) = 1088, the final R = 0.0461 and wR = 0.1048 for 2112 observed reflections (1 〉 2σ(I)). 展开更多
关键词 fitanocene FERROCENE HETERONUCLEAR ferrocenesulfonate 4-aminosalicylic acid
下载PDF
Organic interfacial engineering of gold nanowires for selective glycerol electrooxidation
5
作者 Zhe Wang Qingling Hong +5 位作者 Boqiang Miao Tianjiao Wang Yu Ding Pujun Jin Pei Chen Yu Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期502-507,共6页
The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecu... The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecule(Au-NW@PEI)is obtained by an up-bottom post-modification approach.Physical characterization,molecular dynamics simulation and density functional theory demonstrate that the loose-packed PEI monolayer firmly and uniformly distribute on the Au-NW surface due to the strong Au-N interaction.Electrochemical experiments and product analysis display that PEI modification significantly enhance the electro-activity of Au-NW for the glycerol electro-oxidation reaction(GEOR)due to the electronic effect.Meanwhile,the steric hindrance and electrostatic effect of PEI layer make the optimizing adsorption of intermediates possible.Therefore,the selectivity of C3 product glyceric acid over Au-NW@PEI is increased by nearly 20%.The work thus indicates that the rational design of metal-organic interface can effectively elevate the electro-activity and selectivity of Au nanostructures,which may have wide application in biomass development. 展开更多
关键词 Glycerol electrooxidation reaction Organic interface engineering Gold-based nanomaterials ELECTROCATALYSIS SELECTIVITY
原文传递
Fine-tuning of pore-space-partitioned metal-organic frameworks for efficient C_(2)H_(2)/C_(2)H_(4) and C_(2)H_(2)/CO_(2) separation 被引量:1
6
作者 Xiaobing Mu Yingying Xue +5 位作者 Mancheng Hu Peng Zhang Ying Wang Haipeng Li Shuni Li Quanguo Zhai 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期593-597,共5页
Acetylene (C_(2)H_(2)) and ethylene (C_(2)H_(4)) both are important chemical raw materials and energy fuel gasses.But the effective removement of trace C_(2)H_(2)from C_(2)H_(4)and the purification of C_(2)H_(2)from c... Acetylene (C_(2)H_(2)) and ethylene (C_(2)H_(4)) both are important chemical raw materials and energy fuel gasses.But the effective removement of trace C_(2)H_(2)from C_(2)H_(4)and the purification of C_(2)H_(2)from carbon dioxide(CO_(2)) are particularly challenging in the petrochemical industry.As a class of porous physical adsorbent,metal-organic frameworks (MOFs) have exhibited great success in separation and purification of light hydrocarbon gas.Herein,we rationally designed four novel MOFs by the strategy of pore space partition(PSP) via introducing triangular tri(pyridin-4-yl)-amine (TPA) into the 1D hexagonal channels of acs-type parent skeleton.By modulating the functional groups of linear dicarboxylate linkers for the parent skeleton,a series of isoreticular PSP-MOFs (SNNU-278-281) were successfully obtained.The synergistic effects of suitable pore size and Lewis basic functional groups make these MOFs ideal C_(2)H_(2)adsorbents.The gas adsorption experimental results show that all MOFs have excellent C_(2)H_(2)uptakes.Specially,SNNU-278demonstrates a high C_(2)H_(2)uptake of 149.7 cm3/g at 273 K and 1 atm.Meanwhile,SNNU-278-281 MOFs also show extremely great C_(2)H_(2)separation from CO_(2)and C_(2)H_(4).The optimized SNNU-281 with highdensity hydroxy groups exhibits extraordinary C_(2)H_(2)/CO_(2)and C_(2)H_(2)/C_(2)H_(4)dynamic breakthrough interval times up to 31 min/g and 17 min/g under 298 K and 1 bar. 展开更多
关键词 Metal-organic framework Pore space partition C_(2)H_(2)adsorption C_(2)H_(2)/C_(2)H_(4)separation C_(2)H_(2)/CO_(2)separation
原文传递
A new indium-based MOF as the highly stable luminescent ultra-sensitive antibiotic detector
7
作者 Wenjuan Ji Guojiao Wang +8 位作者 Bingqiang Wang Bo Yan Lulu Liu Lu Xu Tiantian Ma Shuqin Yao Yunlong Fu Lingjuan Zhang Quanguo Zhai 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第4期51-57,共7页
A novel luminescent double-interpenetrated metal-organic framework(MOF),named{[In_(6)(O)_(3)(BTB)_(4)]·3H_(2)O}_(n)(1),is designed and synthesized using the tritopic linkers(1,3,5-tris(4-carboxyphenyl)benzene(H_(... A novel luminescent double-interpenetrated metal-organic framework(MOF),named{[In_(6)(O)_(3)(BTB)_(4)]·3H_(2)O}_(n)(1),is designed and synthesized using the tritopic linkers(1,3,5-tris(4-carboxyphenyl)benzene(H_(3)BTB))and tetranuclear clusters[In_(4)O_(2)(COO)_(8)].1 features 3,8-connected dual-wall"cage-in-cage"and exhibits excellent chemical stability owing to its high connectivity and double-interpenetrated architectures.Moreover,it could rapidly detect thiamphenicol(THI),nitrofurazone(NFZ),and nitrofurantoin(NFT)antibiotics in N,N-dime-thylformamide(DMF)with superior detection sensitivity(Ksv)and low detection limits(LOD)of 4.52×10^(3)M^(-1)and 348.6 ppm,1.43×10^(5)M^(-1)and 13.8 ppm,and 1.47×10^(5)M^(-1)and 12.1 ppm for THI,NFZ,and NFT,respectively.Additionally,compound 1 exhibits good selectivity and recyclability.It is also effectively used to detect NFT in the milk sample.Furthermore,the mechanism of luminescence quenching was revealed through the experimental results and the density functional theory calculations.The occurrence of photo-induced electron transfer(PET)affects the fluorescence quenching effect of NFT and NFZ.The design of indium-based MOFs has the potential to detect antibiotic residues in food. 展开更多
关键词 Metal-organic framework POROUS INDIUM Stability Luminescent sensitive Antibiotic detection
原文传递
Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis
8
作者 Xi-Lai Liu Yu-Chuan Jiang +4 位作者 Jiang-Tao Huang Wei Zhong Bin He Pu-Jun Jin Yu Chen 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期175-186,共12页
Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt... Small-molecule electrooxidation-boosted water electrolysis(WE)is an energy-saving method for hydrogen(H2)production.Herein,PdPt bimetallenes(PdPt BMLs)are obtained through the simple galvanic replacement reaction.PdPt BMLs reveal 2.93-fold enhancement in intrinsic electroactivity and 4.53-fold enhancement in mass electroactivity for the formate oxidation reaction(FOR)with respect to Pd metallenes(Pd MLs)at 0.50 V potential due to the synergistic effect.Meanwhile,the introduction of Pt atoms also considerably increases the electroactivity of PdPt BMLs for hydrogen evolution reaction(HER)with respect to Pd MLs in an alkaline medium,which even exceeds that with the use of commercial Pt nanocrystals.Inspired by the outstanding FOR and HER electroactivity of bifunctional PdPt BMLs,a two-electrode FOR-boosted WE system(FOR-WE)is constructed by using PdPt BMLs as the cathode and the anode.The FOR-WE system only requires an operational voltage of 0.31 V to achieve H2 production,which is 1.48 V lower than that(ca.1.79 V)with the use of the traditional WE system. 展开更多
关键词 ELECTROCATALYST formate oxidation reaction hydrogen evolution reaction metallene water electrolysis
下载PDF
Pt-Te alloy nanowires towards formic acid electrooxidation reaction
9
作者 Bin Sun Yu-Chuan Jiang +5 位作者 Qing-Ling Hong Xue Liu Fu-Min Li Dong-Sheng Li Yun Yang Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期481-489,I0013,共10页
The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is a... The high-performance anodic electrocatalysts is pivotal for realizing the commercial application of the direct formic acid fuel cells.In this work,a simple polyethyleneimine-assisted galvanic replacement reaction is applied to synthesize the high-quality PtTe alloy nanowires(PtTe NW)by using Te NW as an efficient sacrificial template.The existence of Te atoms separates the continuous Pt atoms,triggering a direct reaction pathway of formic acid electrooxidation reaction(FAEOR)at PtTe NW.The one-dimensional architecture and highly active sites have enabled PtTe NW to reveal outstanding electrocatalytic activity towards FAEOR with the mass/specific activities of 1091.25 mA mg^(-1)/45.34 A m^(-2)at 0.643 V potential,which are 44.72/23.16 and 20.26/11.75 times bigger than those of the commercial Pt and Pd nanoparticles,respectively.Density functional theory calculations reveal that Te atoms optimize the electronic structure of Pt atoms,which decreases the adsorption capacity of CO intermediate and simultaneously improves the durability of PtTe NW towards FAEOR.This work provides the valuable insights into the synthesis and design of efficient Pt-based alloy FAEOR electrocatalysts. 展开更多
关键词 Formic acid electrooxidation PtTe alloy nanowires Galvanic replacement reaction Reaction pathway Fuel cells
下载PDF
Auxiliary ligand-directed assembly of a non-interpenetrated cage-within-cage metal-organic framework for highly efficient C_(2)H_(2)/CO_(2) separation
10
作者 Yong-Peng Li Jing-Jing Ni +1 位作者 Shu-Cong Fan Quan-Guo Zhai 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第6期22-26,共5页
The development of metal-organic frameworks(MOFs)with highly efficient adsorption and separation of acet-ylene is very important and challenging in chemical industry due to the explosive nature of acetylene.Porous MOF... The development of metal-organic frameworks(MOFs)with highly efficient adsorption and separation of acet-ylene is very important and challenging in chemical industry due to the explosive nature of acetylene.Porous MOFs can be constructed by inserting a second auxiliary ligand,which allows the use of large ligands to construct non-interpenetrated structures and increase pore utilization.Herein,SNNU-205 is successfully synthesized,which connects two sets of interpenetrated structures to form a double walled cage-within-cage structure by using the introduction of a second auxiliary ligand.The modified pore environment enables SNNU-205 to efficiently selectively adsorb C_(2)H_(2)over CO_(2).At 298 K and 1 atm,SNNU-205 can uptake much more C_(2)H_(2)(76.3 cm^(3)g1)than CO_(2)(47.3 cm^(3)g^(-1)),resulting in a high substance ratio of C_(2)H_(2)-to-CO_(2)(1.6).More importantly,the ideal adsorbed solution theory selectivity calculations and column breakthrough tests further indicate SNNU-205 to be promising adsorbents for C_(2)H_(2)adsorption and purification. 展开更多
关键词 Metal-organic frameworks(MOFs) Second auxiliary ligand Acetylene storage Acetylene/carbon dioxide separation
原文传递
Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium 被引量:7
11
作者 Yongqiang Kang Fumin Li +4 位作者 Shuni Li Pujun Jin Jinhui Zeng Jiaxing Jiang Yu Chen 《Nano Research》 SCIE EI CAS CSCD 2016年第12期3893-3902,共10页
Nanocrystals of Rh, an important member of the noble metal catalyst family, have wide applications in heterogeneous catalytic reactions. Controlling the morphology of these noble metal nanocrystals has become an effec... Nanocrystals of Rh, an important member of the noble metal catalyst family, have wide applications in heterogeneous catalytic reactions. Controlling the morphology of these noble metal nanocrystals has become an effective strategy for improving their catalytic activity and durability. In this work, well-defined Rh nanodendrites with very thin triangular branches as subunits are synthesized using a facile diethylene glycol reduction method, assisted by polyethyleneimine as a complex-forming agent and surfactant. For the first time, the methanol oxidation reaction (MOR) on Rh nanocrystals with a well-defined morphology is investigated using various electrochemical techniques in an alkaline medium. Unexpectedly, the as-prepared Rh nanodendrites, with ultrathin nanosheet subunits, exhibit superior electrocatalytic activity and durability during the MOR in an alkaline medium, indicating that Rh nanocrystals with specific morphology may be highly promising alternatives to Pt electrocatalysts in the MOR in an alkaline medium. 展开更多
关键词 RHODIUM nanodendrites fuel cells methanol electrooxidation ELECTROCATALYSIS
原文传递
Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts 被引量:8
12
作者 Hui-Ying Sun Guang-Rui Xu +4 位作者 Fu-Min Li Qi ng-Li ng Hong Pu-Jun Jin Pei Chen Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期234-240,I0009,共8页
The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(... The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis. 展开更多
关键词 Ammonia electrolysis Water electrolysis Ammonia oxidation reaction Hydrogen evolution reaction Platinum nanocubes
下载PDF
Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction 被引量:8
13
作者 Tian-Jiao Wang Xiaoyang Liu +3 位作者 Ying Li Fumin Li Ziwei Deng Yu Chen 《Nano Research》 SCIE EI CAS CSCD 2020年第1期79-85,共7页
Electrochemical water splitting(EWS)is a highly clean and efficient method for high-purity hydrogen production.Unfortunately,EWS suffers from the sluggish and complex oxygen evolution reaction(OER)kinetics at anode.At... Electrochemical water splitting(EWS)is a highly clean and efficient method for high-purity hydrogen production.Unfortunately,EWS suffers from the sluggish and complex oxygen evolution reaction(OER)kinetics at anode.At present,the efficient,stable,and low-cost non-precious metal based OER electrocatalyst is still a great and long-term challenge for the future industrial application of EWS technology.Herein,we develop a simple and fast approach for gram-scale synthesis of flower-like cobalt-based layered double hydroxides nanosheet aggregates by ultrasonic synthesis,which show outstanding electrocatalytic performance for the oxygen evolution reaction in alkaline media,such as preeminent stability,small overpotential of 300 mV at 10 mA·cm^−2 and small Tafel slope of 110 mV·dec^−1. 展开更多
关键词 electrochemical water splitting oxygen evolution reaction gram-scale synthesis layered double hydroxides nanosheet aggregates
原文传递
Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction 被引量:6
14
作者 Qi Xue Guangrui Xu +4 位作者 Rundong Mao Huimin Liu Jinghui Zeng Jiaxing Jiang Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1153-1159,共7页
Designing the low cost, active, durable, and alcohol-tolerant cathode catalysts towards the oxygen reduction reaction(ORR) is significant for the large-scale commercialization of direct alcohol fuel cells.Recently, Pd... Designing the low cost, active, durable, and alcohol-tolerant cathode catalysts towards the oxygen reduction reaction(ORR) is significant for the large-scale commercialization of direct alcohol fuel cells.Recently, Pd-based nanocrystals have attracted attention as Pt-alternative cathode catalysts towards the ORR in the alkaline electrolyte. Unfortunately, the pristine Pd-based nanocrystals lack the selectivity towards the ORR due to their inherent activity for the alcohol molecule oxidation reaction in the alkaline electrolyte. In this work, polyethyleneimine(PEI) modified Au Pd alloy nanocrystals with Au-rich Au Pd alloy cores and Pd-rich Pd Au alloy shells(AuPd@PdAu-PEI) are successfully synthesized using a traditional chemical reduction method in presence of PEI. The rotating disk electrode(RDE) technique is applied to evaluate the ORR performance of AuPd@PdAu-PEI nanocrystals. Compared with commercial Pd black,AuPd@PdAu-PEI nanocrystals show significantly enhanced activity and durability towards the ORR, and simultaneously exhibit particular alcohol tolerance towards the ORR in the alkaline electrolyte. 展开更多
关键词 Fuel cells PdAu alloy Surface modification Oxygen reduction reaction Alcohol tolerance
下载PDF
Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts 被引量:4
15
作者 Gengtao Fu Qian Zhang +4 位作者 Jiayan Wu Dongmei Sun Lin Xu Yawen Tang Yu Chen 《Nano Research》 SCIE EI CAS CSCD 2015年第12期3963-3971,共9页
可控制高贵金属 nanocrystals 自己组装具有为高度活跃的 electrocatalysts 的发展的宽广兴趣。这里,我们与多孔的洞和不平的表面为像立方体的磅 nanoassemblies (Pt-CNAs ) 的产量很高的合成报导一条有效调停精氨酸的热水的途径基于... 可控制高贵金属 nanocrystals 自己组装具有为高度活跃的 electrocatalysts 的发展的宽广兴趣。这里,我们与多孔的洞和不平的表面为像立方体的磅 nanoassemblies (Pt-CNAs ) 的产量很高的合成报导一条有效调停精氨酸的热水的途径基于零维的磅 nanocrystals 自己组装。在这进程,精氨酸充当在邻近的 nanocrystals 之间的 reductant,结构指导代理人,和连接器。有趣地, Pt-CNAs 展览单个水晶的结构与主导 { 100 } 方面由 X 光检查衍射证实了。把研究基于 electrocatalytic,同样综合的 Pt-CNAs 展览在甲醇氧化反应改进了 electrocatalytic 活动以及好稳定性和公司忍耐。Pt-CNAs 好表演被归因于他们的唯一的形态学和表面结构。我们相信这里构画出的合成策略能被递讲道理地设计的其它为在高效燃料房间的使用的一金属或二金属的 nanoassemblies。 展开更多
关键词 高活性催化剂 精氨酸 组装体 立方体 纳米铂 合成 介导 金属纳米晶
原文传递
Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation 被引量:7
16
作者 Xin Long Tian Lijuan Wang +2 位作者 Peilin Deng Yu Chen Bao Yu Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1067-1076,共10页
Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical sh... Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical shortfalls, especially the undesirable activity and durability issues of electrocatalysts toward methanol oxidation reaction. In light of these challenges, the inherent advantages of unsupported Pt based nanostructures demonstrate their great potentials as durable and efficient electrocatalysts for direct methanol fuel cells. This review will summarize recent achievements of unsupported Pt-based electrocatalysts toward methanol oxidation, with highlighting the interactions between the performance and structure tailoring and composition modulating. At last, a perspective is proposed for the upcoming challenges and possible opportunities to further prompt the practical application of unsupported Pt-based electrocatalysts for direct methanol fuel cells. 展开更多
关键词 Unsupported Pt nanostructures ALLOYS Core/Shell Methanol oxidation
下载PDF
Controlled growth and photoluminescence of highly oriented arrays of ZnO nanocones with different diameters 被引量:4
17
作者 MA JunHu YANG HeQing +4 位作者 SONG YuZhe LI Li XIE XiaoLi LIU RuiNi WANG LinFang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第5期1264-1272,共9页
Large-scale oriented ZnO nanocone arrays were directly grown on zinc substrate through a hydro-thermal reaction of Zn foil with aqueous butylamine solution(3 mol/L) at 100-180 ℃ for 12 h.The syn-thesized products wer... Large-scale oriented ZnO nanocone arrays were directly grown on zinc substrate through a hydro-thermal reaction of Zn foil with aqueous butylamine solution(3 mol/L) at 100-180 ℃ for 12 h.The syn-thesized products were characterized with X-ray diffraction,Raman spectrum,scanning electron mi-croscopy and transmission electron microscopy.The results showed that the ZnO nanocones were single crystalline with the wurtzite structure and grown along the [0001] direction.The diameter of nanocones is decreased with increasing the reaction temperature.A possible growth mechanism was also proposed to account for the formation of the ZnO nanocone arrays.The photoluminescence spectra of the ZnO nanocone arrays were studied at room temperature,two UV emission bands at 377 and 396 nm assigned to free exciton emission and exciton-exciton collision,respectively,and phonon replicas associated with 2-E2 phonon were observed in the PL spectra. 展开更多
关键词 ZNO ZNO NANOCONE ARRAYS BUTYLAMINE PHOTOLUMINESCENCE
原文传递
Au core-PtAu alloy shell nanowires for formic acid electrolysis 被引量:5
18
作者 Qi Xue Xin-Yu Bai +8 位作者 Yue Zhao Ya-Nan Li Tian-Jiao Wang Hui-Ying Sun Fu-Min Li Pei Chen Pujun Jin Shi-Bin Yin Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期94-102,共9页
Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au ... Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au core-Pt Au alloy shell nanowires(Au@PtxAu UFNWs).Among them,Au@Pt_(0.077) Au UFNWs exhibit the best performance for formic acid oxidation reaction(FAOR)and hydrogen evolution reaction(HER),which only require applied potentials of 0.29 V and-22.6 m V to achieve a current density of 10 m A cm^(-2),respectively.The corresponding formic acid electrolyzer realizes the electrochemical H2 production at a voltage of only 0.51 V with 10 m A cm^(-2) current density.Density functional theory(DFT)calculations reveal that the Au-riched Pt Au alloy structure can facilitates the direct oxidation pathway of FAOR and consequently elevates the FAOR activity of Au@Pt_(0.077) Au UFNWs.This work provides meaningful insights into the electrochemical H_(2) production from both the construction of advanced bifunctional electrocatalysts and the replacement of OER. 展开更多
关键词 Au core-PtAu alloy shell nanowires Formic acid oxidation reaction Reaction pathway Hydrogen evolution reaction Acidic water electrolysis
下载PDF
Heterostructured Pd/PdO nanowires for selective and efficient CO_(2) electroreduction to CO 被引量:4
19
作者 Tian-Jiao Wang Wen-Sheng Fang +3 位作者 Yi-Ming Liu Fu-Min Li Pei Chen Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期407-413,I0011,共8页
Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activi... Palladium(Pd) nanostructures are highly promising electrocatalysts for the carbon dioxide electrochemical reduction(CO_(2) ER). At present, it is still challenge for the synthesis of Pd nanostructures with high activity, selectivity and stability. In this work, a facile PdII-complex pyrolysis method is applied to synthesize the high-quality one-dimensional heterostructured Pd/Pd O nanowires(Pd/Pd O H-NWs).The as-prepared Pd/Pd O H-NWs have a large electrochemically active surface area, abundant defects and Pd/Pd O heterostructure. Electrochemical measurement results reveal that Pd/Pd O H-NWs exhibit up to 94% CO Faraday efficiency with a current density of 11.6 m A cm^(-2) at an applied potential of -0.8 V. Meanwhile, Pd/Pd O H-NWs can achieve a stable catalytic process of 12 h for CO_(2) ER. Such outstanding CO_(2) ER performance of Pd/Pd O H-NWs has also been verified in the flow cell test. The density functional theory calculations indicate that Pd/Pd O heterostructure can significantly weaken the CO adsorption on Pd sites, which improves the CO tolerance and consequently enhances the catalytic performance of Pd/Pd O H-NWs for CO_(2) ER. This work highlights a facile complex pyrolysis strategy for the synthesis of Pd-based CO_(2) ER catalysts and provides a new application instance of metal/metal oxide heterostructure in electrocatalysis. 展开更多
关键词 Pd/PdO nanowires Heterostructure Carbon dioxide electrochemical reduction Carbon monoxide Faraday efficiency
下载PDF
Porous palladium phosphide nanotubes for formic acid electrooxidation 被引量:4
20
作者 Tian-Jiao Wang Yu-Chuan Jiang +4 位作者 Jia-Wei He Fu-Min Li Yu Ding Pei Chen Yu Chen 《Carbon Energy》 SCIE CAS 2022年第3期283-293,共11页
The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palla... The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palladium phosphide(PdxPy)porous nanotubes(PNTs)with different phosphide content(i.e.,Pd3P and Pd5P2)are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II)complex nanorods and succedent phosphating treatment.During the reduction process,the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture.On the basis of the unique synthetic procedure and structural advantages,Pd3P PNTs with optimized phos phide content show outstanding electroactivity and stability for FAEOR.Im portantly,the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction,which effectively enhances the FAEOR electroactivity of Pd3P PNTs.In view of the facial synthesis,excellent electroactivity,high stability,and unordinary selectivity,Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC. 展开更多
关键词 electronic effect formic acid oxidation reaction palladium phosphide porous nanotubes self-template method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部