期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Phase structure evolution and its effect on magnetic and mechanical properties of B-doped Sm_(2)Co_(17)-type magnets with high Fe content
1
作者 Yao-Wen Li Zhuang Liu +8 位作者 Hai-Chen Wu Fang Wang Chao-Qun Zhu Dong-Liang Tan Yu Liu Yang Yang Ming-Xiao Zhang Ren-Jie Chen A-Ru Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期582-588,共7页
The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and me... The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content. 展开更多
关键词 Sm_(2)Co_(17)-type magnets magnetic and mechanical properties
下载PDF
Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
2
作者 王斐 张亚玲 +2 位作者 杨文佳 张会生 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期16-31,共16页
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ... Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field. 展开更多
关键词 valley polarization valley-polarized topological states two-dimensional material
下载PDF
Spin Transport Properties of MnBi_(2)Te_(4)-Based Magnetic Tunnel Junctions
3
作者 董新龙 贾鑫 +4 位作者 严志 申学敏 李泽宇 乔振华 许小红 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第8期80-85,共6页
The van der Waals heterojunctions,stacking of different two-dimensional materials,have opened unprecedented opportunities to explore new physics and device concepts.Here,combining the density functional theory with no... The van der Waals heterojunctions,stacking of different two-dimensional materials,have opened unprecedented opportunities to explore new physics and device concepts.Here,combining the density functional theory with non-equilibrium Green’s function technique,we systematically investigate the spin-polarized transport properties of van der Waals magnetic tunnel junctions(MTJs),Cu/MnBi_(2)Te_(4)/MnBi_(2)Te_(4)/Cu and Cu/MnBi_(2)Te_(4)/hBN/n·MnBi_(2)Te_(4)/Cu(n=1,2,3).It is found that the maximum tunnel magnetoresistance of Cu/MnBi_(2)Te_(4)/hBN/3·MnBi_(2)Te_(4)/Cu MTJs can reach 162.6%,exceeding the system with only a single layer MnBi_(2)Te_(4).More interestingly,our results indicate that Cu/MnBi_(2)Te_(4)/h-BN/n·MnBi_(2)Te_(4)/Cu(n=2,3)MTJs can realize the switching function,while Cu/MnBi_(2)Te_(4)/h-BN/3·MnBi_(2)Te_(4)/Cu MTJs exhibit the negative differential resistance.The Cu/MnBi_(2)Te_(4)/h-BN/3·MnBi_(2)Te_(4)/Cu in the parallel state shows a spin injection efficiency of more than 83.3%.Our theoretical findings of the transport properties will shed light on the possible experimental studies of MnBi_(2)Te_(4)-based van der Waals magnetic tunneling junctions. 展开更多
关键词 EXCEEDING EQUILIBRIUM
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
4
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 FE acac in IS on of Controllable Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanoparticles
下载PDF
Structure and Magnetic Properties of the γ’-Fe4N Films on Cu Underlayers
5
作者 江凤仙 赵烨 +3 位作者 周国伟 张君 范九萍 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期148-151,共4页
The γ'-Fe4N films on Cu underlayers are deposited on the glass and Si substrates by dc magnetron reactive sputtering. The effects of Cu underlayer on the structure, morphology and magnetic properties of the γ'-Fe4... The γ'-Fe4N films on Cu underlayers are deposited on the glass and Si substrates by dc magnetron reactive sputtering. The effects of Cu underlayer on the structure, morphology and magnetic properties of the γ'-Fe4N films are studied. The single-phase γ'-Fe4N films with Cu underlayers on the glass substrate are obtained, while the mixture of Fe and γ'-Fe4N is observed on the Si substrate. In comparison with the films without Cu underlayers, the grains of the films with Cu underlayers exhibit a non-uniform size distribution and give rise to a rougher surface. The magnetic measurements indicate that the γ'-Fe4N films show a good soft ferromagnetic behavior. The enhanced coercivity in the films with Cu underlayers is observed due to the deterioration of the crystallographic structure as well as the rougher surface. 展开更多
关键词 Fe4N Films on Cu Underlayers CU Structure and Magnetic Properties of the
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
6
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery Oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Recent progress on two-dimensional ferroelectrics:Material systems and device applications
7
作者 范芷薇 渠靖媛 +6 位作者 王涛 温滟 安子文 姜琦涛 薛武红 周鹏 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期40-53,共14页
Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive appli... Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at. 展开更多
关键词 two-dimensional materials FERROELECTRICS device applications
下载PDF
Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates 被引量:1
8
作者 白宇浩 王霞 +1 位作者 穆林平 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期118-122,共5页
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and or... Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect. 展开更多
关键词 of for Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates is been on from that into
下载PDF
Anomalous magnetic property and broadband photodetection in ultrathin non-layered manganese selenide semiconductor
9
作者 Ye Zhao Ruilong Yang +5 位作者 Ke Yang Jiarui Dou Xiaoting Yang Jinzhong Guo Guowei Zhou Xiaohong Xu 《Nano Research》 SCIE EI CSCD 2024年第9期8578-8584,共7页
Two-dimensional(2D)semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in nextgeneration spintronic and optoelectronic devices.However,controllable synthesis of intrinsic 2D ma... Two-dimensional(2D)semiconductors with intrinsic ferromagnetism are highly desirable for potential applications in nextgeneration spintronic and optoelectronic devices.However,controllable synthesis of intrinsic 2D magnetic semiconductor on a substrate is still a challenging task.Herein,large-area 2D non-layered rock salt(α-phase)MnSe nanosheets were grown on mica substrates,with the thickness changing from 54.2 to 0.9 nm(one unit cell),by chemical vapour deposition.The X-ray diffraction,Raman spectroscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy measurements confirmed that the resulting 2Dα-MnSe nanosheets were obtained as high-quality single crystals.The magnetic hysteresis loops and synchrotron X-ray measurements directly indicated the anomalous magnetic properties inα-MnSe nanosheets.Comprehensive analysis of the reasons for magnetic property revealed that the low-temperature phase transition,small number of stacking differences in crystals,and surface weak oxidation in(111)-orientedα-MnSe were the main mechanisms.Furthermore,α-MnSe nanosheets exhibited broadband photoresponse from 457 to 671 nm with an outstanding detectivity and responsivity behaviours.This study presents the detailed growth process of ultrathin 2D magnetic semiconductorα-MnSe,and its outstanding magnetic properties and broadband photodetection,which provide an excellent platform for magneto-optical and magneto-optoelectronic research. 展开更多
关键词 two-dimensional material anomalous magnetism broadband photodetection α-phase MnSe non-layered crystal
原文传递
Synergistic effect of Ni^(Ⅱ)and Co/Fe^(Ⅲ)in doped mixed-valence phosphonate for enhancing electrocatalytic oxygen evolution 被引量:1
10
作者 Juan-Juan Hou Jian-Tao Yuan +2 位作者 Wei Zhang Ying-Xia Wang Xian-Ming Zhang 《Green Energy & Environment》 SCIE EI CSCD 2022年第3期432-439,共8页
Metal organophosphonates have been explored in energy-related fields due to their high chemical and thermal stability as a type of uniformly precursor,but only few of pristine metal organophosphonate are directly used... Metal organophosphonates have been explored in energy-related fields due to their high chemical and thermal stability as a type of uniformly precursor,but only few of pristine metal organophosphonate are directly used for oxygen evolution reaction(OER)catalysts.Here,a mixedvalence iron phosphonate(Fe_(3)-ppat)has been constructed and applied to OER catalysis considered the potential active sites in pillars Fe^(Ⅱ)(-H_(2)O)_(4)(COO)_(2)and inorganic layers Fe^(Ⅲ)(μ_(2)–OH)PO_(3).Specifically,isostructural trimetallic framework Fe_(1.7)Co_(0.3)Ni_(1.0)-ppat possesses a minimum overpotential(291 mV),small Tafel slope(91.65 mV dec^(-1)),and high stability up to 83 h.The enhanced catalytic performance could be mainly ascribed to the synergistic effect of Ni^(Ⅱ)equivalent occupancy in pillars and Co/Fe^(Ⅲ)in layers. 展开更多
关键词 PHOSPHONATE STABILITY organo
下载PDF
Writability issues in high-anisotropy perpendicular magnetic recording media
11
作者 王芳 许小红 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期1-12,共12页
Challenges and recent developments associated with writability issues in high-anisotropy perpendicular recording media are reviewed. The writing field is limited by the high coercivity caused by the high anisotropy. S... Challenges and recent developments associated with writability issues in high-anisotropy perpendicular recording media are reviewed. The writing field is limited by the high coercivity caused by the high anisotropy. Some new alterna- tives are proposed to solve the writability issues, including texture-tilting-assisted, domain-wall-assisted, energy-assisted magnetic recording technologies, and so on, In addition, we propose new alternatives for the next-generation of magnetic recording media. 展开更多
关键词 magnetic recording media high anisotropy WRITABILITY switching field
下载PDF
Magnetic-field modulation of topological electronic state and emergent magneto-transport in a magnetic Weyl semimetal
12
作者 Jianlei Shen Jiacheng Gao +15 位作者 Changjiang Yi Meng Li Shen Zhang Jinying Yang Binbin Wang Min Zhou Rongjin Huang Hongxiang Wei Haitao Yang Youguo Shi Xiaohong Xu Hong-Jun Gao Baogen Shen Geng Li Zhijun Wang Enke Liu 《The Innovation》 EI 2023年第2期78-82,77,共6页
The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics.Schemes to achieve this have been proposed theoretically,but few can be realized experimental... The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics.Schemes to achieve this have been proposed theoretically,but few can be realized experimentally.Here,combining transverse transport,theoretical calculations,and scanning tunneling microscopy/spectroscopy(STM/S)investigations,we provide an observation that the topological electronic state,accompanied by an emergent magneto-transport phenomenon,was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6.A giant unconventional anomalous Hall effect(UAHE)is found during the magnetization re-orientation from easy axes to hard ones in magnetic field,with a UAHE peak around the low field of 5 kOe. 展开更多
关键词 TOPOLOGICAL electronic state
原文传递
Large Tunneling Magnetoresistance and Perfect Spin Filtering Effect in van der Waals Cu/FeX_(2)/h-BN/FeX_(2)/Cu(X=Cl,Br,I)Magnetic Tunnel Junctions
13
作者 Xinlong Dong Xiaowen Shi +4 位作者 Dan Qiao Zeyu Li Yuhao Bai Zhenhua Qiao Xiaohong Xu 《Chinese Physics Letters》 SCIE EI CAS 2024年第10期112-118,共7页
The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications.Here,combing density functional theory with ... The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications.Here,combing density functional theory with non-equilibrium Green’s function technique. 展开更多
关键词 technique. resistance Perfect
下载PDF
Interfacial engineering of the layered oxide cathode materials for sodium-ion battery 被引量:2
14
作者 Quanqing Zhao Ruru Wang +4 位作者 Ming Gao Faheem KButt Jianfeng Jia Haishun Wu Youqi Zhu 《Nano Research》 SCIE EI CSCD 2024年第3期1441-1464,共24页
The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries(SIBs)due to their large theoretical capacity,favorable two-dimensional(2D)ion diffusion channel,and simp... The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries(SIBs)due to their large theoretical capacity,favorable two-dimensional(2D)ion diffusion channel,and simple manipuility.However,their cycling stability,rate capability,and thermal stability are still significantly concerned and highlighted before further practical application.The chemical,mechanical and electrochemical stability of the cathode–electrolyte interfaces upon cycling is of great significance.Herein,the unique structural and electrochemical properties of the layered oxide cathode materials for SIB are reviewed.The mechanism of bulk/surface degradation induced by oxygen evolution,phase transition,microcrack,and electrolyte decomposition is thoroughly understood.Furthermore,the interfacial engineering to construct stable interface through various effective methods is fully discussed.The future outlook and challenges for interfacial engineering in this filed are also summarized.This review should shed light on the rational design and construct of robust interface for applications of superior layered oxide cathodes in SIB and may suggest future research directions. 展开更多
关键词 interfacial engineering sodium-ion battery layered oxide ELECTROLYTE INTERFACE
原文传递
Ultrafast magnetization enhancement and spin current injection in magnetic multilayers by exciting the nonmagnetic metal
15
作者 Wen-Tian Lu Zhe Yuan Xiaohong Xu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第12期158-168,共11页
A systematic investigation of spin injection behavior in Au/FM(FM=Fe and Ni)multilayers is performed using the superdiffusive spin transport theory.By exciting the nonmagnetic layer,the laser-induced hot electrons may... A systematic investigation of spin injection behavior in Au/FM(FM=Fe and Ni)multilayers is performed using the superdiffusive spin transport theory.By exciting the nonmagnetic layer,the laser-induced hot electrons may transfer spin angular momentum into the adjacent ferromagnetic(FM)metals resulting in ultrafast demagnetization or enhancement.We find that these experimental phenomena sensitively depend on the particular interface reflectivity of hot electrons and may reconcile the different observations in the experiment.Stimulated by the ultrafast spin currents carried by the hot electrons,we propose the multilayer structures to generate highly spin-polarized currents for the development of future ultrafast spintronics devices.The spin polarization of the electric currents carried by the hot electrons can be significantly enhanced by the joint effects of bulk and interfacial spin filtering.Meanwhile,the intensity of the generated spin current can be optimized by varying the number of repeated stacking units and the thickness of each metallic layer. 展开更多
关键词 SPINTRONICS ultrafast magnetodynamics spin polarization transport magnetic multilayer
原文传递
Spinel Li Mn_(2)O_(4)integrated with coating and doping by Sn self-segregation 被引量:4
16
作者 Huaifang Shang Dingguo Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期909-916,共8页
The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy developme... The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources.Here,we report LiMn_(2)O_(4)integrated with coating and doping by Sn self-segregation.Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn_(2)O_(4),with a small Sn doping in the bulk phase.The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese.The as-obtained product demonstrates superior high initial capacities of 124 mAh·g^(-1)and 120 mAh·g^(-1)with the capacity retention of 91.1%and 90.2%at 25℃and55℃after 50 cycles,respectively.This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries. 展开更多
关键词 spinel lithium manganate coating and doping tin self-segregation high capacity good stability
下载PDF
Promoting surface reconstruction of NiFe layered double hydroxides via intercalating[Cr(C_(2)O_(4))_(3)]^(3-)for enhanced oxygen evolution 被引量:2
17
作者 Yujie Wu Minglei Song +8 位作者 Yu-Cheng Huang Chung-Li Dong Yingying Li Yuxuan Lu Bo Zhou Dongdong Wang Jianfeng Jia Shuangyin Wang Yanyong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期140-148,I0005,共10页
Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(... Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis. 展开更多
关键词 NiFe layered double hydroxides [Cr(C_(2)O_(4))_(3)]^(3-)intercalation Dynamic restructuring Operando spectroscopies Oxygen evolution reaction
下载PDF
Reversible control of magnetic and transport properties of NdNiO_(3-δ)epitaxial films 被引量:1
18
作者 Huihui Ji Guowei Zhou +2 位作者 Jun Zhang Xiaojiao Wang Xiaohong Xu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第3期317-322,I0003,共7页
Rare-earth nickelates possess intrinsic charge order,orbital order,and electron-lattice coupling,which make them very interesting for applications in oxide-based electronic devices.In this study,we grew NdNiO_(3-δ)(N... Rare-earth nickelates possess intrinsic charge order,orbital order,and electron-lattice coupling,which make them very interesting for applications in oxide-based electronic devices.In this study,we grew NdNiO_(3-δ)(NNO) films with oxygen pressures changing from 27 to 10^(-5) Pa.With decreasing oxygen pressure,the antiferromagnetic state of the NNO film becomes a ferromagnetic state,and the resistance increases significantly.According to combined X-ray absorption spectro scopy and X-ray linear dichroism measurements,the ratio of Ni^(2+)-ions increases with decreasing oxygen-pressure,and the preferred orbital occupation changes from x^(2)-y^(2) to 3 z^(2)-r^(2).In addition,using the ionic-liquid gating method to control the migration of oxygen vacancies,both the magnetic properties and resistance of NNO films can be modulated reversibly.The oxygen vacancy induces a valence in the Ni ions and the orbital occupation changes,which alters the magnetic properties and the electronic transport in these NNO films.This study describes a novel tunable method for electronic devices that use NdNiO_(3-δ) films,and opens new doors for future improvements and functionalities. 展开更多
关键词 NdNiO3 films Oxygen vacancy Valence state Orbital occupation Ionic liquid gating Rare earths
原文传递
Electron modulation of cobalt carbonate hydroxide by Mo doping for urea-assisted hydrogen production 被引量:1
19
作者 Siyu Zheng Hongye Qin +3 位作者 Xuejie Cao Tongzhou Wang Wenbo Lu Lifang Jiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期258-265,I0007,共9页
Combining urea oxidation reaction(UOR) with hydrogen evolution reaction(HER) is an effective method for energy saving and highly efficient electrocatalytic hydrogen production. Herein, molybdenumincorporated cobalt ca... Combining urea oxidation reaction(UOR) with hydrogen evolution reaction(HER) is an effective method for energy saving and highly efficient electrocatalytic hydrogen production. Herein, molybdenumincorporated cobalt carbonate hydroxide nanoarrays(CoxMoyCH) are designed and synthesized as a bifunctional catalyst towards UOR and HER. Benefiting from the Mo doping, the dispersed nanoarray structure and redistributed electron density, the CoxMoyCH catalyst display outstanding catalytic performance and durability for both HER and UOR, affording the overpotential of 82 m V for HER and delivering a low potential of the 1.33 V for UOR(vs. reversible hydrogen electrode, RHE) to attain a current density of 10 m A cm^(-2), respectively. Remarkably, when CoxMoyCH was applied as bifunctional catalyst in a twoelectrode electrolyzer, a working voltage of 1.40 V is needed in urea-assisted water electrolysis at10 m A cm^(-2) and without apparent decline for 40 h, outperforming the working voltage of 1.51 V in conventional water electrolysis. 展开更多
关键词 Urea-assisted water electrolysis Bifunctional catalyst Molybdenum doping Cobalt carbonate hydroxides Hydrogen evolution reaction
下载PDF
Effects of pre-aging on defects evolution and magnetic properties of Sm-Co-Fe-Cu-Zr magnets 被引量:1
20
作者 Munzali Musa Xin Song +4 位作者 Yao Liu Fang Wang Jiuping Fan Tianyu Ma Xiaobing Ren 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1878-1884,I0003,共8页
The heterogeneous precipitation in the 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets has been found to contain complex formation and dissociation of defects.Though low-temperature pre-aging has been utilized to promote t... The heterogeneous precipitation in the 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets has been found to contain complex formation and dissociation of defects.Though low-temperature pre-aging has been utilized to promote the precipitate nucleation by the enlarged chemical driving force,how the defects evolve after pre-aging and how the possibly changed defects state affects the subsequent precipitation behavior remain unclear.In this work,a model magnet Sm25Co47.9Fe18.5Cu5.6Zr3.0(wt%)was selected to study.Through comparison with the as-solution-treated state,it is found that pre-aging for 2 h at 550℃reduces the defects density,which was characterized by less cell boundaries(i.e.,larger cell size)and less basal stacking faults inside the cells(i.e.,higher 2:17 R ordering degree).Further studies reveal that after aging for the same time(10 h)at the same temperature(830℃),the reduced density of defects by preaging also leads to slower precipitation/phase transformation kinetics when co mpared with the non-preaged one,which was characterized by the lower 2:17 R ordering degree and smaller coercivity for the former.These findings suggest that pre-aging has a strong influence on the density of defects and their evolution during subsequent isothermal aging process,which should be carefully considered to tailor the microstructure and magnetic properties of Sm-Co-Fe-Cu-Zr magnets. 展开更多
关键词 Rare earths Sm-Co magnet Magnetic properties PRECIPITATES DEFECTS
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部