This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
In this paper, we first employ the complex method to deritive all meromorphic solutions of an auxiliary ordinary differential equation, and then find all meromorphic exact solutions of the modified ZK equation, modifi...In this paper, we first employ the complex method to deritive all meromorphic solutions of an auxiliary ordinary differential equation, and then find all meromorphic exact solutions of the modified ZK equation, modified KdV equation, nonlinear Klein-Gordon equation and modified BBM equation. Our work shows that there exist some classes of rational solutions wr,2 (z) and simple periodic solutions ws,1 (z) which are new and are not degenerated successively to by the elliptic function solutions.展开更多
In this article, we study the blow-up phenomena of generalized double dispersion equations u_(tt)-u_(xx)-u_(xxt) + u_(xxxx)-u_(xxtt)= f(u_x)_x.Under suitable conditions on the initial data, we first establish a blow-u...In this article, we study the blow-up phenomena of generalized double dispersion equations u_(tt)-u_(xx)-u_(xxt) + u_(xxxx)-u_(xxtt)= f(u_x)_x.Under suitable conditions on the initial data, we first establish a blow-up result for the solutions with arbitrary high initial energy, and give some upper bounds for blow-up time T~* depending on sign and size of initial energy E(0). Furthermore, a lower bound for blow-up time T~* is determined by means of a differential inequality argument when blow-up occurs.展开更多
We study the homogenization of the incompressible Navier-Stokes equations with periodic oscillating coefficient in a bounded non-homogeneous media. To do that, we introduce a generalized compensate compactness result ...We study the homogenization of the incompressible Navier-Stokes equations with periodic oscillating coefficient in a bounded non-homogeneous media. To do that, we introduce a generalized compensate compactness result and a suitable class of test function to this problem. By passing the limit, we obtain the homogenized model of this problem.展开更多
In this article, we introduce some results with respect to the integrality and exact solutions of some 2nd order algebraic DEs. We obtain the sufficient and necessary conditions of integrable and the general meromorph...In this article, we introduce some results with respect to the integrality and exact solutions of some 2nd order algebraic DEs. We obtain the sufficient and necessary conditions of integrable and the general meromorphic solutions of these equations by the complex method, which improves the corresponding results obtained by many authors. Our results show that the complex method provides a powerful mathematical tool for solving a large number of nonlinear partial differential equations in mathematical physics.展开更多
In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatte...In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.展开更多
We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish...We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.展开更多
In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson ...In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.展开更多
In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret ...In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret sharing scheme is measured by means of the complexity a and the randomness . Informally, the com- plexity a is the ratio between the maximum of information received by each participant and the minimum of information corresponding to every key. The randomness is the ratio between the amount of information distributed to the set of users U = {1, …, n} and the minimum of information corresponding to every key. In this paper, we discuss a and of any linear multi-secret sharing schemes realized by linear codes with non-threshold structures, and provide two algorithms to make a and to be the minimum, respectively. That is, they are optimal.展开更多
Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz ...Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.展开更多
We consider a class of nonlinear kinetic Fokker-Planck equations modeling quantum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the existence and convergence rate to the...We consider a class of nonlinear kinetic Fokker-Planck equations modeling quantum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the existence and convergence rate to the steady state of global classical solution to such kind of equations around the steady state.展开更多
We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose dif...We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.展开更多
Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model...Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model the parameters are known constants. However in many practical situations, it is not reasonable to require that the constraints or the objective function in quadratic programming problems be specified in precise, crisp terms. In such situations, it is desirable to use some type of Fuzzy Quadratic Programming (FQP) problem. In this paper a new approach is proposed to derive the fuzzy objective value of fuzzy quadratic programming problem, where the constraints coefficients and the right-hand sides are all triangular fuzzy numbers. The proposed method is solved using MATLABTM toolbox and the numerical results are presented.展开更多
Let (X, d, μ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ. Let L be a second order self-adjoint positive operator on L^2(X). Assume that the semigroup e-^tL gen...Let (X, d, μ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ. Let L be a second order self-adjoint positive operator on L^2(X). Assume that the semigroup e-^tL generated by -L satisfies the Gaussian upper bounds on L2(X). In this article we study a local version of Hardy space hi (X) associated with L in terms of the area function characterization, and prove their atomic characters. Furthermore, we introduce a Moser type local boundedness condition for L, and then we apply this condition to show that the space hzL(X) can be characterized in terms of the Littlewood-Paley function. Finally, a broad class of applications of these results is described.展开更多
Let be the quaternion Heisenberg group, and let P be the affine automorphism group of . We develop the theory of continuous wavelet transform on the quaternion Heisenberg group via the unitary representations of P on...Let be the quaternion Heisenberg group, and let P be the affine automorphism group of . We develop the theory of continuous wavelet transform on the quaternion Heisenberg group via the unitary representations of P on L2( ). A class of radial wavelets is constructed. The inverse wavelet transform is simplified by using radial wavelets. Then we investigate the Radon transform on . . A Semyanistyi-Lizorkin space is introduced, on which the Radon transform is a bijection. We deal with the Radon transform on both by the Euclidean Fourier transform and the group Fourier transform. These two treatments are essentially equivalent. We also give an inversion formula by using wavelets, which does not require the smoothness of functions if the wavelet is smooth. In addition, we obtain an inversion formula of the Radon transform associated with the sub-Laplacian on .展开更多
A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an u...A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.展开更多
For 1≤p<∞we introduce a notion of"p-mean oscillation"on C^(n)in terms of the q metric induced by reproducing kernel of F_(ψ)^(2).It is shown that the densely-defined Hankel operators Hf,Hf:F_(ψ)^(p)→...For 1≤p<∞we introduce a notion of"p-mean oscillation"on C^(n)in terms of the q metric induced by reproducing kernel of F_(ψ)^(2).It is shown that the densely-defined Hankel operators Hf,Hf:F_(ψ)^(p)→F_(ψ)^(p),are simultaneously bounded if and only if f is of bounded“p-mean oscillation”.Furthermore,it is also shown that the densely-defined Hankel operators Hf、Hf:F_(ψ)^(p)→F_(ψ)^(p),are simultaneously compact if and only if f is of vanishing“p-mean oscillation”.Here the weightψis a positive function of logarithmic grow th sat isfying certain suitable conditions.展开更多
We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly impro...We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly improve some recent results in the literature.展开更多
In this paper,the idea of a combination of variable separation approach and the extended homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero equation.The equation is reduced to some(...In this paper,the idea of a combination of variable separation approach and the extended homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero equation.The equation is reduced to some(1+1)-dimensional nonlinear equations by applying the variable separation approach and solves reduced equations with the extended homoclinic test technique.Based on this idea and with the aid of symbolic computation,some new explicit solutions can be obtained.展开更多
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
基金supported by the NSFC(11271090)NSF of Guangdong(S2012010010121)
文摘In this paper, we first employ the complex method to deritive all meromorphic solutions of an auxiliary ordinary differential equation, and then find all meromorphic exact solutions of the modified ZK equation, modified KdV equation, nonlinear Klein-Gordon equation and modified BBM equation. Our work shows that there exist some classes of rational solutions wr,2 (z) and simple periodic solutions ws,1 (z) which are new and are not degenerated successively to by the elliptic function solutions.
基金partially supported by the NSF of China(11801108,11626070)the Scientific Program of Guangdong Province(2016A030310262)the College Scientific Research Project of Guangzhou City(1201630180)
文摘In this article, we study the blow-up phenomena of generalized double dispersion equations u_(tt)-u_(xx)-u_(xxt) + u_(xxxx)-u_(xxtt)= f(u_x)_x.Under suitable conditions on the initial data, we first establish a blow-up result for the solutions with arbitrary high initial energy, and give some upper bounds for blow-up time T~* depending on sign and size of initial energy E(0). Furthermore, a lower bound for blow-up time T~* is determined by means of a differential inequality argument when blow-up occurs.
文摘We study the homogenization of the incompressible Navier-Stokes equations with periodic oscillating coefficient in a bounded non-homogeneous media. To do that, we introduce a generalized compensate compactness result and a suitable class of test function to this problem. By passing the limit, we obtain the homogenized model of this problem.
基金supported by the Visiting Scholar Program of Chern Institute of Mathematics at Nankai Universitythe support with the NSF of China (No. 11271090, 11326083)+2 种基金NSF of Guangdong Province (S2012010010121)Shanghai university young teacher training program (ZZSDJ12020)projects 10XKJ01, 12C401 and 12C104 from the Leading Academic Discipline Project of Shanghai Dianji University
文摘In this article, we introduce some results with respect to the integrality and exact solutions of some 2nd order algebraic DEs. We obtain the sufficient and necessary conditions of integrable and the general meromorphic solutions of these equations by the complex method, which improves the corresponding results obtained by many authors. Our results show that the complex method provides a powerful mathematical tool for solving a large number of nonlinear partial differential equations in mathematical physics.
文摘In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.
基金supported by National Natural Science Foundation of China (Grant No. 11271379)Guangzhou Postdoctoral Science Research Foundation Project (Grant No. gdbsh2014003)
文摘We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.
基金Supported by National Natural Science Foundation of China(11471084,11301101,11971125)Young Innovative Talent Project of Department of Edcucation of Guangdong Province(2017KQNCX220)the Natural Research Project of Zhaoqing University(221622).
文摘In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11271003the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20134410110003+3 种基金High Level Talents Project of GuangdongGuangdong Provincial Natural Science Foundation under Grant No.S2012010009950the Project of Department of Education of Guangdong Province under Grant No 2013KJCX0146the Natural Science Foundation of Bureau of Education of Guangzhou under Grant No.2012A004
文摘In a linear multi-secret sharing scheme with non-threshold structures, several secret values are shared among n participants, and every secret value has a specified access structure. The efficiency of a multi- secret sharing scheme is measured by means of the complexity a and the randomness . Informally, the com- plexity a is the ratio between the maximum of information received by each participant and the minimum of information corresponding to every key. The randomness is the ratio between the amount of information distributed to the set of users U = {1, …, n} and the minimum of information corresponding to every key. In this paper, we discuss a and of any linear multi-secret sharing schemes realized by linear codes with non-threshold structures, and provide two algorithms to make a and to be the minimum, respectively. That is, they are optimal.
基金Supported by National Natural Science Foundation of China(11271092)Natural Science Foundation of Guangdong Province(s2011010005367)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114410110001,20124410120002)SRF of Guangzhou Education Bureau(2012A088)
文摘Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.
基金supported by the National Natural Science Foundation of China(11371151)
文摘We consider a class of nonlinear kinetic Fokker-Planck equations modeling quantum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the existence and convergence rate to the steady state of global classical solution to such kind of equations around the steady state.
基金Acknowledgements This work was supported by the Visiting Scholar Program of Chern Institute of Mathematics at Nankai University when the first and third authors worked as visiting scholars. The authors wish to thank the anonymous referees for their very helpful comments and useful suggestions. This work was also supported by the National Natural Science Foundation of China (Grant No. 11271090), the Tianyuan Youth Fund of the National Natural Science Foundation of China (Grant No. 11326083), the Shanghai University Young Teacher Training Program (ZZSDJ12020), the Innovation Program of Shanghai Municipal Education Commission (14YZ164), the Natural Science Foundation of Guangdong Province (S2012010010121), and the Projects (13XKJC01) from the Leading Academic Discipline Project of Shanghai Dianji University.
文摘We establish several upper-bound estimates for the growth of meromorphic functions with radially distributed value. We also obtain a normality criterion for a class of meromorphic functions, where any two of whose differential polynomials share a non-zero value. Our theorems improve some previous results.
文摘Quadratic Programming (QP) is a mathematical modeling technique designed to optimize the usage of limited resources and has been widely applied to solve real world problems. In conventional quadratic programming model the parameters are known constants. However in many practical situations, it is not reasonable to require that the constraints or the objective function in quadratic programming problems be specified in precise, crisp terms. In such situations, it is desirable to use some type of Fuzzy Quadratic Programming (FQP) problem. In this paper a new approach is proposed to derive the fuzzy objective value of fuzzy quadratic programming problem, where the constraints coefficients and the right-hand sides are all triangular fuzzy numbers. The proposed method is solved using MATLABTM toolbox and the numerical results are presented.
基金supported by China Postdoctoral Science Foundation funded project(Grant No.201104383)the Fundamental Research Funds for the Central Universities(Grant No.11lGPY56)+1 种基金National Natural Science Foundation of China(Grant No.10925106)Guangdong Province Key Laboratory of Computational Science and Grant for Senior Scholars from the Association of Colleges and Universities of Guangdong
文摘Let (X, d, μ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ. Let L be a second order self-adjoint positive operator on L^2(X). Assume that the semigroup e-^tL generated by -L satisfies the Gaussian upper bounds on L2(X). In this article we study a local version of Hardy space hi (X) associated with L in terms of the area function characterization, and prove their atomic characters. Furthermore, we introduce a Moser type local boundedness condition for L, and then we apply this condition to show that the space hzL(X) can be characterized in terms of the Littlewood-Paley function. Finally, a broad class of applications of these results is described.
基金supported by National Natural Science Foundation of China(Grant Nos.10971039 and 11271091)the second author is supported by National Natural Science Foundation of China(Grant No.10990012)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2012000110059)
文摘Let be the quaternion Heisenberg group, and let P be the affine automorphism group of . We develop the theory of continuous wavelet transform on the quaternion Heisenberg group via the unitary representations of P on L2( ). A class of radial wavelets is constructed. The inverse wavelet transform is simplified by using radial wavelets. Then we investigate the Radon transform on . . A Semyanistyi-Lizorkin space is introduced, on which the Radon transform is a bijection. We deal with the Radon transform on both by the Euclidean Fourier transform and the group Fourier transform. These two treatments are essentially equivalent. We also give an inversion formula by using wavelets, which does not require the smoothness of functions if the wavelet is smooth. In addition, we obtain an inversion formula of the Radon transform associated with the sub-Laplacian on .
基金supported by National Natural Science Foundation of China (Grant No.11071084)Natural Science Foundation of Guangdong Province (Grant No. 10451063101006332)
文摘A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.
文摘For 1≤p<∞we introduce a notion of"p-mean oscillation"on C^(n)in terms of the q metric induced by reproducing kernel of F_(ψ)^(2).It is shown that the densely-defined Hankel operators Hf,Hf:F_(ψ)^(p)→F_(ψ)^(p),are simultaneously bounded if and only if f is of bounded“p-mean oscillation”.Furthermore,it is also shown that the densely-defined Hankel operators Hf、Hf:F_(ψ)^(p)→F_(ψ)^(p),are simultaneously compact if and only if f is of vanishing“p-mean oscillation”.Here the weightψis a positive function of logarithmic grow th sat isfying certain suitable conditions.
基金supported by Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1226)National Natural Science Foundation of China(Grant No.11171078)+1 种基金the Specialized Fund for the Doctoral Program of Higher Education of China(Grant No.20114410110002)the Project for High Level Talents of Guangdong Higher Education Institutes
文摘We consider a class of discrete nonlinear Schrdinger equations with unbounded potentials. We obtain some new multiplicity results of breathers of the equations by using critical point theory. Our results greatly improve some recent results in the literature.
文摘In this paper,the idea of a combination of variable separation approach and the extended homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero equation.The equation is reduced to some(1+1)-dimensional nonlinear equations by applying the variable separation approach and solves reduced equations with the extended homoclinic test technique.Based on this idea and with the aid of symbolic computation,some new explicit solutions can be obtained.