期刊文献+
共找到355篇文章
< 1 2 18 >
每页显示 20 50 100
Frontier Research in Hand, National Demands in Mind——An Interview with XIONG Ke, Director of the State Key Laboratory of Mechanics and Control of Mechanical Structures-
1
作者 XIONG Ke 《Aerospace China》 2016年第3期44-47,共4页
·Prof.XIONG,could you please give us a brief introduction to SKLMCMS?Director XIONG Ke:The State Key Laboratory of Mechanics and Control of Mechanical Structures(SKLMCMS)was established with the approval of t... ·Prof.XIONG,could you please give us a brief introduction to SKLMCMS?Director XIONG Ke:The State Key Laboratory of Mechanics and Control of Mechanical Structures(SKLMCMS)was established with the approval of the Ministry of Science and Technology of the People’s Republic of China in October 2011.The laboratory is located at Nanjing University of Aeronautics and Astronautics(NUAA). 展开更多
关键词 Director Frontier please approval aircraft Nanjing brief innovative disciplines astronautics
下载PDF
In-Plane and Out-of-Plane Mechanical Properties of Zero Poisson’s Ratio Cellular Structures for Morphing Application
2
作者 SONG Leipeng LI Qiang +4 位作者 WANG Hongjie WANG Taoxi NIE Xiaohua KONG Xiangsen SHEN Xing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第3期326-337,共12页
Intelligent structures like zero Poisson’s ratio(ZPR)cellular structures have been widely applied to the engineering fields such as morphing wings in recent decades,owing to their outstanding characteristics includin... Intelligent structures like zero Poisson’s ratio(ZPR)cellular structures have been widely applied to the engineering fields such as morphing wings in recent decades,owing to their outstanding characteristics including light weight and low effective modulus. In-plane and out-of-plane mechanical properties of ZPR cellular structures are investigated in this paper. A theoretical method for calculating in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus of ZPR cellular structures is proposed,and the impacts of the unit cell geometrical configurations on in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus are studied systematically based on finite element(FE)simulation. Experimental tests validate the feasibility and effectiveness of the theoretical and FE analysis. And the results show that the in-plane and out-of-plane mechanical properties of ZPR cellular structures can be manipulated by designing cell geometrical parameters. 展开更多
关键词 cellular structure zero Poisson’s ratio(ZPR) mechanical properties parameter design morphing application
下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
3
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance Combined blast and fragment loading Impact test Finite element simulation
下载PDF
Flexural wave bandgap properties of phononic crystal beams with interval parameters
4
作者 Feiyang HE Zhiyu SHI +3 位作者 Denghui QIAN Y.K.LU Yujia XIANG Xuelei FENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期173-188,共16页
Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is estab... Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties. 展开更多
关键词 phononic crystal beam interval parameter safe bandgap perturbation-based interval finite element method(P-IFEM) affine-based interval finite element method(A-IFEM) interval vibration transmission analysis
下载PDF
Peridynamic Study on Fracture Mode and Crack Propagation Path of a Plate with Multiple Cracks Subjected to Uniaxial Tension
5
作者 Zeyuan Zhou Ming Yu +1 位作者 Xinfeng Wang Zaixing Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2593-2620,共28页
How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation t... How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation that can spontaneously predict the crack nucleation,branch and propagation in materials and structures through a meshfree discrete technique.In this paper,the peridynamic motion equation with boundary traction is improved by simplifying the boundary transfer functions.We calculate the critical cracking load and the fracture angles of the plate with multiple cracks under uniaxial tension.The results are consistent with those predicted by classical fracture mechanics.The fracture mode and crack propagation path are also determined.The calculation shows that the brittle fracture process of the plate with multiple cracks can be conveniently and correctly simulated by the peridynamic motion equation with boundary conditions. 展开更多
关键词 PERIDYNAMICS multiple cracks brittle fracture crack propagation
下载PDF
Fabrication and Mechanical Testing of Ultralight Folded Lattice-CoreSandwich Cylinders 被引量:6
6
作者 Wanxin Li Qing Zheng +1 位作者 Hualin Fan Bin Ji 《Engineering》 SCIE EI 2020年第2期196-204,共9页
In this research,two novel folded lattice-core sandwich cylinders were designed,manufactured,and tested.The lattice core has periodic zigzag corrugations,whose ridges and valleys are directed axially or circumferentia... In this research,two novel folded lattice-core sandwich cylinders were designed,manufactured,and tested.The lattice core has periodic zigzag corrugations,whose ridges and valleys are directed axially or circumferentially.Free vibration and axial compression experiments were performed to reveal the fundamental frequency,free vibration modes,bearing capacity,and failure mode of the cylinder.A folded lattice core effectively restricts local buckling by reducing the dimension of the local skin periodic cell,and improves the global buckling resistance by enhancing the shear stiffness of the sandwich core.The cylinders fail at the mode of material failure and possess excellent load-carrying capacity.An axially directed folded sandwich cylinder has greater load-carrying capacity,while a circumferentially directed folded sandwich cylinder has higher fundamental frequencies.These two types of folded lattices provide a selection for engineers when designing a sandwich cylinder requiring strength or vibration.This research also presents a feasible way to fabricate a large-dimensional folded structure and promote its engineering application. 展开更多
关键词 Folded lattice-core SANDWICH CYLINDER FABRICATION MECHANICAL TESTING
下载PDF
Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators 被引量:4
7
作者 Hongguang Liu Ke Xiong +1 位作者 Kan Bian Kongjun Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期382-393,共12页
This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer-metal composite (IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples... This paper develops analytical electromechanical formulas to predict the mechanical deformation of ionic polymer-metal composite (IPMC) cantilever actuators under DC excitation voltages. In this research, IPMC samples with Pt and Ag electrodes were manufactured, and the large nonlinear deformation and the effect of curvature on surface electrode resistance of the IPMC samples were investigated experimentally and theoretically. A distributed electrical model was modified for calculating the distribution of voltage along the bending actuator. Then an irreversible thermodynamic model that could predict the curvature of a unit part of an IPMC actuator is combined with the electrical model so that an analytical electromechanical model is developed. The electromechanical model is then validated against the experimental results obtained from Pt- and Ag-IPMC actuators under various excitation voltages. The good agreement between the electromechanical model and the actuators shows that the analytical electromechanical model can accurately describe the large nonlinear quasi-static deflection behavior of IPMC actuators. 展开更多
关键词 ACTUATOR Ionic polymer metal composite Nonlinear deformation Electromechanical model
下载PDF
Gain-Scheduled Control and Stability Analysis of Morphing Aircraft in Transition Process 被引量:2
8
作者 Li Wencheng Jin Dongping 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期1080-1086,共7页
The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is inv... The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller. 展开更多
关键词 MORPHING aircraft gain-scheduled CONVEX HULL THEORY slowly VARYING system THEORY transition stability
下载PDF
Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures 被引量:2
9
作者 Yijie BIAN Puhao LI +3 位作者 Fan YANG Peng WANG Weiwei LI Hualin FAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第10期1561-1582,共22页
Lattice structures are widely used in many engineering fields due to their excellent mechanical properties such as high specific strength and high specific energy absorption(SEA)capacity.In this paper,square-cell latt... Lattice structures are widely used in many engineering fields due to their excellent mechanical properties such as high specific strength and high specific energy absorption(SEA)capacity.In this paper,square-cell lattice structures with different lattice orientations are investigated in terms of the deformation modes and the energy absorption(EA)performance.Finite element(FE)simulations of in-plane compression are carried out,and the theoretical models from the energy balance principle are developed for calculating the EA of these lattice structures.Satisfactory agreement is achieved between the FE simulation results and the theoretical results.It indicates that the 30◦oriented lattice has the largest EA capacity.Furthermore,inspired by the polycrystal microstructure of metals,novel structures of bi-crystal lattices and quad-crystal lattices are developed through combining multiple singly oriented lattices together.The results of FE simulations of compression indicate that the EA performances of symmetric lattice bi-crystals and quad-crystals are better than those of the identical lattice polycrystal counterparts.This work confirms the feasibility of designing superior energy absorbers with architected meso-structures from the inspiration of metallurgical concepts and microstructures. 展开更多
关键词 lattice structure quasi-static loading deformation mode energy absorption(EA)
下载PDF
Structural Design and Control of Variable Camber Wing Driven by Ultrasonic Motors 被引量:1
10
作者 刘卫东 朱华 +2 位作者 周盛强 白亚磊 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第2期180-186,共7页
A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin underg... A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved.Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing,aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control. 展开更多
关键词 variable camber wing ultrasonic motors(USMs) morphing skin control system wind tunnel test
下载PDF
Dynamics and Proportional-derivative Control of 3-link Planar Manipulator
11
作者 MUHAMMAD Adeel 《International Journal of Plant Engineering and Management》 2019年第1期1-9,共9页
In this paper, an effective dynamic equation of a three link manipulator for a control purpose has been dealt with by the Euler-Lagrange method. The structural properties of the derived dynamic equation were proved so... In this paper, an effective dynamic equation of a three link manipulator for a control purpose has been dealt with by the Euler-Lagrange method. The structural properties of the derived dynamic equation were proved so that the vast control strategies developed for the serial counterparts can be easily extended for controlling the three link manipulator. In addition, it is illustrated how to design a PD controller for the robot manipulator by making use of computed torque method strategy to develop our controller. Simulation results are included in order to depict the performance of the controller. 展开更多
关键词 ROBOTIC MANIPULATOR dynamic modeling PD CONTROLLER EULER-LAGRANGE equation
下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:2
12
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
下载PDF
Interfacial behavior of a thermoelectric film bonded to a graded substrate 被引量:1
13
作者 Juan PENG Dengke LI +3 位作者 Zaixing HUANG Guangjian PENG Peijian CHEN Shaohua CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1853-1870,共18页
To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate s... To improve the thermoelectric converting performance in applications such as power generation,reutilization of heat energy,refrigeration,and ultrasensitive sensors in scramjet engines,a thermoelectric film/substrate system is widely designed and applied,whose interfacial behavior dominates the strength and service life of thermoelectric devices.Herein,a theoretical model of a thermoelectric film bonded to a graded substrate is proposed.The interfacial shear stress,the normal stress in the thermoelectric film,and the stress intensity factors affected by various material and geometric parameters are comprehensively studied.It is found that adjusting the inhomogeneity parameter of the graded substrate,thermal conductivity,and current density of the thermoelectric film can reduce the risk of interfacial failure of the thermoelectric film/graded substrate system.Selecting a stiffer and thicker thermoelectric film is advantageous to the reliability of the thermoelectric film/graded substrate system.The results should be of great guiding significance for the present and upcoming applications of thermoelectric materials in various fields. 展开更多
关键词 thermoelectric film graded substrate interfacial behavior singular integral equation shear stress intensity factor
下载PDF
Principle and Experimental Verification of Caudal-fin-type Piezoelectric-stack Pump with Variable-cross-section Oscillating Vibrator 被引量:12
14
作者 HU Xiaoqi ZHANG Jianhui +3 位作者 HUANG Yi XIA Qixiao HUANG Weiqing ZHAO Chunsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期128-136,共9页
In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overco... In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overcome these drawbacks, utilizing the bending vibration of piezoelectric bimorph to drive fluid was conducted. However, our investigation on the current status of this piezoelectric bimorph pump shows that larger driving force and vibration amplitude are required for fluid pumping; the pumping can be realized through the centrifugal force; and the mechanism of fluid pumping is no longer further studied. Based on these cases, the paper designed a piezoelectric-stack pump with variable-cross-section oscillating (VCSO) vibrator by imitating the swing of the caudal-fin of tuna, and the pump is neither the rotating type nor the volumetric type according to the taxonomy. The interaction between the oscillating vibrator and the fluid parcel is firstly analyzed from the viewpoint of momentum conservation, and the analytical expression of pump flow rate is obtained. Then the modal and harmonic response analyses on the vibrator immerged in water are carried out. From the analyses the first two orders resonance frequencies are 832 Hz and 1 939 Hz, respectively, and the peak value of the tip amplitude is 0.6 mm. Laser Doppler vibrometer is used to measure both the frequency and vibration amplitude, and the determined first two orders resonance frequencies are 617 Hz and 1 356 Hz, respectively. The measured tip amplitude reaches to the peak value of 0.3 mm. At last, experimental measurement for the flow rates with different driving frequencies is conducted. The results show that the flow rate can reach 560 mL/min at 1 370 Hz when the pump runs under the backpressure of 30 mm water column. And the flow rate is as much as 560% of that of experiment results carried out by researchers from Brazil. The proposed pump innovates in both theory and taxonomy; in addition, the pump overcomes the drawbacks such as large flow fluctuation and low flow rate in the traditional FRD type pumps, which will help to broaden the application of the valve-less piezoelectric pump. 展开更多
关键词 caudal-fin-type variable-cross-section piezoelectric-stack valve-less pump
下载PDF
Optimal design of butterfly-shaped linear ultrasonic motor using finite element method and response surface methodology 被引量:9
15
作者 时运来 陈超 赵淳生 《Journal of Central South University》 SCIE EI CAS 2013年第2期393-404,共12页
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ... A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8. 展开更多
关键词 linear ultrasonic motor PIEZOELECTRIC optimal design response surface methodology finite element method
下载PDF
Parameter Optimization of Nose Landing Gear Considering Both Take-off and Landing Performance of Catapult Take-off Carrier-Based Aircraft 被引量:5
16
作者 Zhang Ming Nie Hong He Zhihang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期187-198,共12页
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp... Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off. 展开更多
关键词 carrier-based AIRCRAFT BUFFER PERFORMANCE fast-extension PERFORMANCE AIRCRAFT design optimization sensitivity analysis
下载PDF
Optimal feedback gains of a delayed proportional-derivative(PD) control for balancing an inverted pendulum 被引量:5
17
作者 Qiang Wang Zaihua Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期635-645,共11页
In the dynamics analysis and synthesis of a controlled system, it is important to know for what feedback gains can the controlled system decay to the demanded steady state as fast as possible. This article presents a ... In the dynamics analysis and synthesis of a controlled system, it is important to know for what feedback gains can the controlled system decay to the demanded steady state as fast as possible. This article presents a systematic method for finding the optimal feedback gains by taking the stability of an inverted pendulum system with a delayed proportional-derivative controller as an example. First, the condition for the existence and uniqueness of the stable region in the gain plane is obtained by using the D-subdivision method and the method of stability switch. Then the same procedure is used repeatedly to shrink the stable region by decreasing the real part of the rightmost characteristic root. Finally, the optimal feedback gains within the stable region that minimizes the real part of the rightmost root are expressed by an explicit formula. With the optimal feedback gains, the controlled inverted pendulum decays to its trivial equilibrium at the fastest speed when the initial values around the origin are fixed. The main results are checked by numerical simulation. 展开更多
关键词 Inverted pendulum Time delay Stability Rightmost characteristic root Optimal feedback gain
下载PDF
Contact Analysis and Modeling of Standing Wave Linear Ultrasonic Motor 被引量:6
18
作者 时运来 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1235-1242,共8页
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character... A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor. 展开更多
关键词 standing wave linear ultrasonic motor intermittent contact contact model
下载PDF
Equivalent continuum modeling of beam-like truss structures with flexible joints 被引量:3
19
作者 Fushou Liu Libin Wang +1 位作者 Dongping Jin Hao Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第5期1067-1078,共12页
The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with... The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model. 展开更多
关键词 Large space TRUSS structure Flexible JOINT EQUIVALENT CONTINUUM modeling ANISOTROPIC BEAM model Frequency response
下载PDF
Damage Detection and Material Property Reconstruction of Composite Laminates Using Laser Ultrasonic Technique 被引量:4
20
作者 QIU Jinhao TAO Chongcong +2 位作者 JI Hongli ZHANG Chao ZHAO Jinling 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期1-16,共16页
Laser ultrasonic technique has received increasing attentions in the past decade due to its contactless nature and a wide range of applications have been reported. In this review,applications of laser ultrasonic techn... Laser ultrasonic technique has received increasing attentions in the past decade due to its contactless nature and a wide range of applications have been reported. In this review,applications of laser ultrasonic technique developed at Nanjing University of Aeronautics and Astronautics(NUAA)as well as elsewhere for non-destructive testing in composite laminates are presented. The principles of generating and detecting in a laser ultrasonic system are introduced,three different system configurations are also introduced with each configuration's advantages and disadvantages explained. More importantly,two major applications developed at NUAA for composite laminates are presented including damage detection,stiffness reconstruction and fatigue life prediction. Both applications are realized by a fixed-point PZT sensor and scanning pulse laser based on the linear reciprocal theorem. Analytical method and numerical models are employed and developed to realize the functionalities. 展开更多
关键词 laser ULTRASONIC COMPOSITE LAMINATES DAMAGE detection STIFFNESS RECONSTRUCTION
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部