A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports a...A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.展开更多
A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linea...A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples.展开更多
Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been di...Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been directed toward improving system performance,many studies have concentrated on enhancing the structure of the encoder and decoder.However,this often overlooks the resulting increase in model complexity,imposing additional storage and computational burdens on smart devices.Furthermore,existing work tends to prioritize explicit semantics,neglecting the potential of implicit semantics.This paper aims to easily and effectively enhance the receiver's decoding capability without modifying the encoder and decoder structures.We propose a novel semantic communication system with variational neural inference for text transmission.Specifically,we introduce a simple but effective variational neural inferer at the receiver to infer the latent semantic information within the received text.This information is then utilized to assist in the decoding process.The simulation results show a significant enhancement in system performance and improved robustness.展开更多
Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The r...Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5-3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.展开更多
Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusio...Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusion methods are based on stovepipe architecture,which is optimized with custom fusion strategy for specific sensors.Seeking to develop adaptable navigation that allows rapid integration of any combination of sensors to obtain robust and high-precision navigation solutions in GNSS-denied environment,we propose a generic plug-and-play fusion strategy to estimate land vehicle states.The proposed strategy can handle different sensors in a plug-and-play manner as sensors are abstracted and represented by generic models,which allows rapid reconfiguration whenever a sensor signal is additional or lost during operation.Relative estimations are fused with absolute sensors based on improved factor graph,which includes sensors’error parameters in the non-linear optimization process to conduct sensor online calibration.We evaluate the performance of our approach using a land vehicle equipped with a global positioning system(GPS)receiver as well as inertial measurement unit(IMU),camera,wireless sensor and odometer.GPS is not integrated into the system but treated as ground truth.Results are compared with the most common filtering-based fusion algorithm.It shows that our strategy can process low-quality input sources in a plug-and-play and robust manner and its performance outperforms filtering-based method in GNSS-denied environment.展开更多
A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems...A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.展开更多
This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(...This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(FFT) correlation through hyper code technique and the amount of points in every FFT correlation by using an averaging correlation method. To validate the proposed acquisition performance, the paper applies this algorithm to the real L2C signal collected by the global positioning system(GPS) L2C intermediate frequency(IF) signal sampler—SIS100L2C. The acquisition results show that the proposed modified algorithm can acquire the code phase accurately with less calculation and its acquisition performance is better than the single hyper code method.展开更多
A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtain...A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.展开更多
In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from differe...In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from different prediction methods were compared by a series of model tests performed in calm water and in waves. It is shown that speed loss deprived from RTIM (resistance and thrust identity method) method in regular waves test could satisfy the engineering requirements most.展开更多
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re...Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.展开更多
To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodeti...To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodetic SpatioTemporal data Analysis and Research software(GSTAR).Most of the modules in the GSTAR are coded in C++with object-oriented programming.The layered modular theory is adopted for the design of the software,and the antenna-based data architecture is proposed for users to construct personalized geodetic application scenarios easily.The initial performance of the GSTAR software is evaluated by processing the Global Navigation Satellite System(GNSS)data collected from 315 globally distributed stations over two and a half years.The accuracy of GNSS-based geodetic products is evaluated by comparing them with those released by International GNSS Service(IGS)Analysis Centers(AC).Taking the products released by European Space Agency(ESA)as reference,the Three-Dimension(3D)Root-Mean-Squares(RMS)of the orbit differences are 2.7/6.7/3.3/7.7/21.0 cm and the STandard Deviations(STD)of the clock differences are 19/48/16/32/25 ps for Global Positioning System(GPS),GLObal NAvigation Satellite System(GLONASS),Galileo navigation satellite system(Galileo),BeiDou Navigation Satellite System(BDS),Medium Earth Orbit(MEO),and BDS Inclined Geo-Synchronous Orbit(IGSO)satellites,respectively.The mean values of the X and Y components of the polar coordinate and the Length of Day(LOD)with respect to the International Earth Rotation and Reference Systems Service(IERS)14 C04 products are-17.6 microarc-second(μas),9.2μas,and 14.0μs/d.Compared to the IGS daily solution,the RMSs of the site position differences in the north/east/up direction are 1.6/1.5/3.9,3.8/2.4/7.6,2.5/2.4/7.9 and 2.7/2.3/7.4 mm for GPS-only,GLONASS-only,Galileo-only,and BDS-only solution,respectively.The RMSs of the differences of the tropospheric Zenith Path Delay(ZPD),the north gradients,and the east gradients are 5.8,0.9,and 0.9 mm with respect to the IGS products.The X and Y components of the geocenter motion estimated from GPS-only,Galileo-only,and BDS-only observations well agree with IGS products,while the Z component values are much nosier where anomalous harmonics in GNSS draconitic year can be found.The accuracies of the above products calculated by the GSTAR are comparable with those from different IGS ACs.Compared to the precise scientific orbit products,the 3D RMS of the orbit differences for the two Gravity Recovery and Climate Experiment Follow-on(GRACE-FO)satellites is below 1.5 cm by conducting Precise Point Positioning with Ambiguity Resolution(PPP-AR).In addition,a series of rapid data processing algorithms are developed,and the operation speed of the GSTAR software is 5.6 times faster than that of the Positioning and Navigation Data Analyst(PANDA)software for the quad-system precise orbit determination procedure.展开更多
This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holdin...This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holding augmented or virtual reality devices. Such visual SLAM system, name as collaborative visual SLAM, is different from a typical visual SLAM deployed on a single agent in that information is exchanged or shared among different agents to achieve better robustness, efficiency, and accuracy. We review the representative works on this topic proposed in the past ten years and describe the key components involved in designing such a system including collaborative pose estimation and mapping tasks, as well as the emerging topic of decentralized architecture. We believe this brief survey could be helpful to someone who are working on this topic or developing multi-agent applications, particularly micro-aerial vehicle swarm or collaborative augmented/virtual reality.展开更多
In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algo...In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.展开更多
Integrated quantum key distribution(QKD)systems based on photonic chips have high scalability and stability,and are promising for further construction of global quantum communications networks.On-chip quantum light so...Integrated quantum key distribution(QKD)systems based on photonic chips have high scalability and stability,and are promising for further construction of global quantum communications networks.On-chip quantum light sources are a critical component of a fully integrated QKD system;especially a continuous-variable QKD(CVQKD)system based on coherent detection,which has extremely high requirements for the light sources.Here,for what we believe is the first time,we designed and fabricated two on-chip tunable lasers for CV-QKD,and demonstrated a high-performance system based on these sources.Because of the high output power,fine tunability,and narrow linewidth,the involved on-chip lasers guarantee the accurate shot-noise-limited detection of quantum signals,center wavelength alignment of nonhomologous lasers,and suppression of untrusted excess noise.The system’s secret key rate can reach 0.75 Mb/s at a 50 km fiber distance,and the secure transmission distance can exceed 100 km.Our results mark a breakthrough toward building a fully integrated CV-QKD,and pave the way for a reliable and efficient terrestrial quantum-secure metropolitan area network.展开更多
Based on the wavelength transparency of the Butler matrix(BM)beamforming network,we demonstrate a multibeam optical phased array(MOPA)with an emitting aperture composed of grating couplers at a 1.55μm pitch for wavel...Based on the wavelength transparency of the Butler matrix(BM)beamforming network,we demonstrate a multibeam optical phased array(MOPA)with an emitting aperture composed of grating couplers at a 1.55μm pitch for wavelength-assisted two-dimensional beam-steering.The device is capable of simultaneous multi-beam operation in a field of view(FOV)of 60°×8°in the phased-array scanning axis and the wavelength-tuning scanning axis,respectively.The typical beam divergence is about 4°on both axes.Using multiple linearly chirped lasers,multibeam frequency-modulated continuous wave(FMCW)ranging is realized with an average ranging error of 4 cm.A C-shaped target is imaged for proof-of-concept 2D scanning and ranging.展开更多
In this study,we proposed and experimentally demonstrated an electro-optic modulator with a small footprint and high modulation efficiency,achieved through the utilization of a mode-folded phase shifter with lumped el...In this study,we proposed and experimentally demonstrated an electro-optic modulator with a small footprint and high modulation efficiency,achieved through the utilization of a mode-folded phase shifter with lumped electrodes.The threemode phase shifter recycles the light three times with different waveguide modes while leading to a pronounced tightening of the optical field confinement.We experimentally obtained a 3.7-times improvement in the modulation efficiency.A low V_(π)L for thin-film lithium niobate(TFLN)Mach-Zehnder modulators of 1 V·cm is realized with a device footprint of 2.7 mm×0.6 mm(0.5 mm for the phase shifter).Even greater improvements in modulation efficiency can be expected through the incorporation of additional modes.展开更多
This paper studies the leaderless consensus problems of multi-agent systems with input saturation and intermittent communication over directed networks. Both the state feedback and the output feedback consensus algori...This paper studies the leaderless consensus problems of multi-agent systems with input saturation and intermittent communication over directed networks. Both the state feedback and the output feedback consensus algorithms are developed based on low gain feedback approach. The convergence of the trajectories of all agents can be achieved by these proposed algorithms, if the communication topology has a directed spanning tree, and the intermittent communication period T and time rate ρ are larger than their associated threshold values. Simulation examples are provided to verify the theoretical results.展开更多
Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaini...Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.展开更多
A new hybrid method, which combines improved glass-blown technology with wet etching, is reported to fabricate micro wine-glass resonators with high-quality fused silica. The optimum placement is compared to achieve t...A new hybrid method, which combines improved glass-blown technology with wet etching, is reported to fabricate micro wine-glass resonators with high-quality fused silica. The optimum placement is compared to achieve the resonators with good shell shape. The typical shell diameter is about 4 mm and its thickness covers from dozens to hundreds of micrometers. The etching rates in corrosion solutions with different ratios and at different thicknesses of hemispherical shells are studied. We also conclude how to precisely control the thickness.The corrosion solutions with different ratios of HF solution to NH4 F solution make the spherical shells rougher in different degrees. The best roughness is 0.581 nm in the 1 : 8 ratio corrosion solution while the original roughness is 0.537 nm. This fact shows that the resonator remains atomically smooth surface. Based on the glassblowing spherical fused silica structure, the thickness of the resonator is effectively controlled by buffered oxide etch(BOE)technology according to the measured etching rate. The measured resonant frequency of the hemispherical shell at ambient pressure and room temperature is 1.75 k Hz of rocking mode which is close to the simulated frequency.Using such a low-cost hybrid approach, we can fabricate high-quality microscale resonators in batch.展开更多
This paper studies the consensus problems of the discrete-time multi-agent systems (MASs) in the presence of input saturation constraints over directed communication networks.Two kinds of consensus problems,of the lea...This paper studies the consensus problems of the discrete-time multi-agent systems (MASs) in the presence of input saturation constraints over directed communication networks.Two kinds of consensus problems,of the leaderless consensus problem with no leader agent and the containment control problem with multiple leader agents,are investigated in this paper.Low gain feedback consensus algorithms based on the improved discretetime parametric algebraic Riccati equation (ARE) are proposed to solve the consensus problems.For the MAS without any leader,the trajectories of all agents converge together when the communication networks contain a directed spanning tree.For the MAS with multiple leaders,the trajectories of all follower agents converge to the convex hull spanned by the leader agents when there is at least one leader agent which is trackable for each follower agent.Simulation examples are provided to verify the theoretical results.展开更多
基金supported by the National key research and development program of China(No.2021YFB2900401)by the National Natural Science Foundation of China(No.61861046)+1 种基金the key Natural Science Foundation of shenzhen(No.JCYJ20220818102209020)the key research and development program of shenzhen(No.ZDSYS20210623091807023)。
文摘A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.
基金Project supported by the National Natural Science Foundation of China (Nos.12072007,12072006,12132001,and 52192632)the Ningbo Natural Science Foundation of Zhejiang Province of China (No.202003N4018)the Defense Industrial Technology Development Program of China (Nos.JCKY2019205A006,JCKY2019203A003,and JCKY2021204A002)。
文摘A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples.
基金supported in part by the National Science Foundation of China(NSFC)with grant no.62271514in part by the Science,Technology and Innovation Commission of Shenzhen Municipality with grant no.JCYJ20210324120002007 and ZDSYS20210623091807023in part by the State Key Laboratory of Public Big Data with grant no.PBD2023-01。
文摘Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been directed toward improving system performance,many studies have concentrated on enhancing the structure of the encoder and decoder.However,this often overlooks the resulting increase in model complexity,imposing additional storage and computational burdens on smart devices.Furthermore,existing work tends to prioritize explicit semantics,neglecting the potential of implicit semantics.This paper aims to easily and effectively enhance the receiver's decoding capability without modifying the encoder and decoder structures.We propose a novel semantic communication system with variational neural inference for text transmission.Specifically,we introduce a simple but effective variational neural inferer at the receiver to infer the latent semantic information within the received text.This information is then utilized to assist in the decoding process.The simulation results show a significant enhancement in system performance and improved robustness.
基金supported by the National Natural Science Foundation of China(Grants No.51479124 and 51109143)the Open Cooperation Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.SKHL1422)the Nanjing Hydraulic Research Institute Foundation(Grant No.Y115006)
文摘Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5-3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.
基金partially supported by the National Natural Science Foundation of China(No. 61703207)the Jiangsu Provincial Natural Science Founda- tion of China(No. BK20170801)+2 种基金the Aeronautical Science Foundation of China(No. 2017ZC52017)the Jiangsu Provincial SixTalent Peaks(No. 2015-XXRJ-005)the Jiangsu Province Qing Lan Project
文摘Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusion methods are based on stovepipe architecture,which is optimized with custom fusion strategy for specific sensors.Seeking to develop adaptable navigation that allows rapid integration of any combination of sensors to obtain robust and high-precision navigation solutions in GNSS-denied environment,we propose a generic plug-and-play fusion strategy to estimate land vehicle states.The proposed strategy can handle different sensors in a plug-and-play manner as sensors are abstracted and represented by generic models,which allows rapid reconfiguration whenever a sensor signal is additional or lost during operation.Relative estimations are fused with absolute sensors based on improved factor graph,which includes sensors’error parameters in the non-linear optimization process to conduct sensor online calibration.We evaluate the performance of our approach using a land vehicle equipped with a global positioning system(GPS)receiver as well as inertial measurement unit(IMU),camera,wireless sensor and odometer.GPS is not integrated into the system but treated as ground truth.Results are compared with the most common filtering-based fusion algorithm.It shows that our strategy can process low-quality input sources in a plug-and-play and robust manner and its performance outperforms filtering-based method in GNSS-denied environment.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2012AA121602)the Preliminary Research Program of the General Armament Department of China(51322050202)
文摘A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.
基金supported by the Fundamental Research Fund for the Central Universities(NS2013016)
文摘This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(FFT) correlation through hyper code technique and the amount of points in every FFT correlation by using an averaging correlation method. To validate the proposed acquisition performance, the paper applies this algorithm to the real L2C signal collected by the global positioning system(GPS) L2C intermediate frequency(IF) signal sampler—SIS100L2C. The acquisition results show that the proposed modified algorithm can acquire the code phase accurately with less calculation and its acquisition performance is better than the single hyper code method.
基金supported by Ministry of Science and Technology of the People’s Republic of China No.2014BAG04B01
文摘A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.
文摘In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from different prediction methods were compared by a series of model tests performed in calm water and in waves. It is shown that speed loss deprived from RTIM (resistance and thrust identity method) method in regular waves test could satisfy the engineering requirements most.
基金supported by the National Natural Science Foundation of China(61773087)the National Key Research and Development Program of China(2018YFB1601500)High-tech Ship Research Project of Ministry of Industry and Information Technology-Research of Intelligent Ship Testing and Verifacation([2018]473)
文摘Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.
基金This work was sponsored by National Natural Science Foundation of China(Grant No.41931075,42274041).
文摘To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodetic SpatioTemporal data Analysis and Research software(GSTAR).Most of the modules in the GSTAR are coded in C++with object-oriented programming.The layered modular theory is adopted for the design of the software,and the antenna-based data architecture is proposed for users to construct personalized geodetic application scenarios easily.The initial performance of the GSTAR software is evaluated by processing the Global Navigation Satellite System(GNSS)data collected from 315 globally distributed stations over two and a half years.The accuracy of GNSS-based geodetic products is evaluated by comparing them with those released by International GNSS Service(IGS)Analysis Centers(AC).Taking the products released by European Space Agency(ESA)as reference,the Three-Dimension(3D)Root-Mean-Squares(RMS)of the orbit differences are 2.7/6.7/3.3/7.7/21.0 cm and the STandard Deviations(STD)of the clock differences are 19/48/16/32/25 ps for Global Positioning System(GPS),GLObal NAvigation Satellite System(GLONASS),Galileo navigation satellite system(Galileo),BeiDou Navigation Satellite System(BDS),Medium Earth Orbit(MEO),and BDS Inclined Geo-Synchronous Orbit(IGSO)satellites,respectively.The mean values of the X and Y components of the polar coordinate and the Length of Day(LOD)with respect to the International Earth Rotation and Reference Systems Service(IERS)14 C04 products are-17.6 microarc-second(μas),9.2μas,and 14.0μs/d.Compared to the IGS daily solution,the RMSs of the site position differences in the north/east/up direction are 1.6/1.5/3.9,3.8/2.4/7.6,2.5/2.4/7.9 and 2.7/2.3/7.4 mm for GPS-only,GLONASS-only,Galileo-only,and BDS-only solution,respectively.The RMSs of the differences of the tropospheric Zenith Path Delay(ZPD),the north gradients,and the east gradients are 5.8,0.9,and 0.9 mm with respect to the IGS products.The X and Y components of the geocenter motion estimated from GPS-only,Galileo-only,and BDS-only observations well agree with IGS products,while the Z component values are much nosier where anomalous harmonics in GNSS draconitic year can be found.The accuracies of the above products calculated by the GSTAR are comparable with those from different IGS ACs.Compared to the precise scientific orbit products,the 3D RMS of the orbit differences for the two Gravity Recovery and Climate Experiment Follow-on(GRACE-FO)satellites is below 1.5 cm by conducting Precise Point Positioning with Ambiguity Resolution(PPP-AR).In addition,a series of rapid data processing algorithms are developed,and the operation speed of the GSTAR software is 5.6 times faster than that of the Positioning and Navigation Data Analyst(PANDA)software for the quad-system precise orbit determination procedure.
基金Project Grant JZX7Y2-0190258055601National Natural Science Foundation of China(61402283).
文摘This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holding augmented or virtual reality devices. Such visual SLAM system, name as collaborative visual SLAM, is different from a typical visual SLAM deployed on a single agent in that information is exchanged or shared among different agents to achieve better robustness, efficiency, and accuracy. We review the representative works on this topic proposed in the past ten years and describe the key components involved in designing such a system including collaborative pose estimation and mapping tasks, as well as the emerging topic of decentralized architecture. We believe this brief survey could be helpful to someone who are working on this topic or developing multi-agent applications, particularly micro-aerial vehicle swarm or collaborative augmented/virtual reality.
基金supported by the Important National Science and Technology Specific Project of China(2018ZX03001020-0052016ZX03001022-006)+2 种基金the National Natural Science Foundation of China(61771308)the Shanghai Science and Technology Committee(16DZ1100402)the Special Project of Military and Civilian Integration of Shanghai Economic and Information Committee with the name"Ultra High Sensitivity UAV Communication System Based on Radar Related Technology"
文摘In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.
基金Special Project for Research and Development in Key areas of Guangdong Province(2020B030304002)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)+1 种基金National Natural Science Foundation of China(61671287,61971276,62101320)National Key Research and Development Program of China(2016YFA0302600)。
文摘Integrated quantum key distribution(QKD)systems based on photonic chips have high scalability and stability,and are promising for further construction of global quantum communications networks.On-chip quantum light sources are a critical component of a fully integrated QKD system;especially a continuous-variable QKD(CVQKD)system based on coherent detection,which has extremely high requirements for the light sources.Here,for what we believe is the first time,we designed and fabricated two on-chip tunable lasers for CV-QKD,and demonstrated a high-performance system based on these sources.Because of the high output power,fine tunability,and narrow linewidth,the involved on-chip lasers guarantee the accurate shot-noise-limited detection of quantum signals,center wavelength alignment of nonhomologous lasers,and suppression of untrusted excess noise.The system’s secret key rate can reach 0.75 Mb/s at a 50 km fiber distance,and the secure transmission distance can exceed 100 km.Our results mark a breakthrough toward building a fully integrated CV-QKD,and pave the way for a reliable and efficient terrestrial quantum-secure metropolitan area network.
基金National Key Research and Development Program of China(2022YFB2804502)National Natural Science Foundation of China(6207030193,62090052,62135010)Special-Key Project of Innovation Program of Shanghai Municipal Education Commission(2019-07-00-02-E00075)。
文摘Based on the wavelength transparency of the Butler matrix(BM)beamforming network,we demonstrate a multibeam optical phased array(MOPA)with an emitting aperture composed of grating couplers at a 1.55μm pitch for wavelength-assisted two-dimensional beam-steering.The device is capable of simultaneous multi-beam operation in a field of view(FOV)of 60°×8°in the phased-array scanning axis and the wavelength-tuning scanning axis,respectively.The typical beam divergence is about 4°on both axes.Using multiple linearly chirped lasers,multibeam frequency-modulated continuous wave(FMCW)ranging is realized with an average ranging error of 4 cm.A C-shaped target is imaged for proof-of-concept 2D scanning and ranging.
基金supported by the National Key R&D Program of China(No.2023YFB2905502)the National Natural Science Foundation of China(Nos.62122047 and 61935011).
文摘In this study,we proposed and experimentally demonstrated an electro-optic modulator with a small footprint and high modulation efficiency,achieved through the utilization of a mode-folded phase shifter with lumped electrodes.The threemode phase shifter recycles the light three times with different waveguide modes while leading to a pronounced tightening of the optical field confinement.We experimentally obtained a 3.7-times improvement in the modulation efficiency.A low V_(π)L for thin-film lithium niobate(TFLN)Mach-Zehnder modulators of 1 V·cm is realized with a device footprint of 2.7 mm×0.6 mm(0.5 mm for the phase shifter).Even greater improvements in modulation efficiency can be expected through the incorporation of additional modes.
基金supported by the Shanghai Natural Science Foundation under Grant No.172R1445400the National Natural Science Foundation of China under Grant No.61903249
文摘This paper studies the leaderless consensus problems of multi-agent systems with input saturation and intermittent communication over directed networks. Both the state feedback and the output feedback consensus algorithms are developed based on low gain feedback approach. The convergence of the trajectories of all agents can be achieved by these proposed algorithms, if the communication topology has a directed spanning tree, and the intermittent communication period T and time rate ρ are larger than their associated threshold values. Simulation examples are provided to verify the theoretical results.
文摘Piezoelectric resonators are widely used in frequency reference devices, mass sensors, resonant sensors(such as gyros and accelerometers), etc. Piezoelectric resonators usually work in a special resonant mode. Obtaining working resonant mode with high quality is key to improve the performance of piezoelectric resonators. In this paper, the resonance characteristics of a rectangular lead zirconium titanate(PZT) piezoelectric resonator are studied. On the basis of the field-programmable gate array(FPGA) embedded system, direct digital synthesizer(DDS) and automatic gain controller(AGC) are used to generate the driving signals with precisely adjustable frequency and amplitude. The driving signals are used to excite the piezoelectric resonator to the working vibration mode. The influence of the connection of driving electrodes and voltage amplitude on the vibration of the resonator is studied. The quality factor and vibration linearity of the resonator are studied with various driving methods mentioned in this paper. The resonator reaches resonant mode at 330 kHz by different driving methods.The relationship between resonant amplitude and driving signal amplitude is linear. The quality factor reaches over 150 by different driving methods. The results provide a theoretical reference for the efficient excitation of the piezoelectric resonator.
基金the National Natural Science Foundation of China(No.61574093)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-10-0583)+2 种基金the Science Fund Program(No.2013ZC57003)the Pre-research Fund(No.9140A14010511JW0304)the Fund of National Key Laboratory of Science and Technology on Nano/Micro Fabrication,Shanghai Jiao Tong University(No.9140C790405110C7904)
文摘A new hybrid method, which combines improved glass-blown technology with wet etching, is reported to fabricate micro wine-glass resonators with high-quality fused silica. The optimum placement is compared to achieve the resonators with good shell shape. The typical shell diameter is about 4 mm and its thickness covers from dozens to hundreds of micrometers. The etching rates in corrosion solutions with different ratios and at different thicknesses of hemispherical shells are studied. We also conclude how to precisely control the thickness.The corrosion solutions with different ratios of HF solution to NH4 F solution make the spherical shells rougher in different degrees. The best roughness is 0.581 nm in the 1 : 8 ratio corrosion solution while the original roughness is 0.537 nm. This fact shows that the resonator remains atomically smooth surface. Based on the glassblowing spherical fused silica structure, the thickness of the resonator is effectively controlled by buffered oxide etch(BOE)technology according to the measured etching rate. The measured resonant frequency of the hemispherical shell at ambient pressure and room temperature is 1.75 k Hz of rocking mode which is close to the simulated frequency.Using such a low-cost hybrid approach, we can fabricate high-quality microscale resonators in batch.
基金Found ation item:the National Natural Science Foundation of China(No.61903249)the Shanghai Natural Science Foundation(No.172R1445400)。
文摘This paper studies the consensus problems of the discrete-time multi-agent systems (MASs) in the presence of input saturation constraints over directed communication networks.Two kinds of consensus problems,of the leaderless consensus problem with no leader agent and the containment control problem with multiple leader agents,are investigated in this paper.Low gain feedback consensus algorithms based on the improved discretetime parametric algebraic Riccati equation (ARE) are proposed to solve the consensus problems.For the MAS without any leader,the trajectories of all agents converge together when the communication networks contain a directed spanning tree.For the MAS with multiple leaders,the trajectories of all follower agents converge to the convex hull spanned by the leader agents when there is at least one leader agent which is trackable for each follower agent.Simulation examples are provided to verify the theoretical results.