The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define ...The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai-Binchuan fault zone. The result shows that there is an at least 25 km- long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the 14C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan- Chenghai fault, the northern part of the Chenghai-Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co-seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3-7.4. Furthermore, combining published age data with the 14C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai-Binchuan fault zone since 17190~50 yr. BP. The in-situ recurrence interval of Mw 7.3-7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical ...In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.展开更多
The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at south...The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.展开更多
The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP i...The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP is mainly controlled by the Indian summer monsoon, and detailed studies on the loess-paleosol sequences in this region can provide valuable terrestrial evidence of past changes in the Indian summer monsoon. Secondly, the river terraces in the eastern margin of the TP are considered to be a sensitive recorder of neotectonism to reflect the timing and amplitude of the TP uplift.展开更多
Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the so...Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the southeastern margin of the Qinghai-Tibetan Plateau since 1500.This paper provides a periodic table of the earthquake strain energy release in the fault zones and the fault block areas.The study shows that seismic strain energy release is strong in the east and south,and weak in the west and north.The overall seismic strain energy release of the Yushu-Xianshuihe-Xiaojiang fault system is consistent with the quasi-periodic pattern.The seismic cycle of some fault zones and fault block areas shows synchronization to a certain extent.The risk cannot be ignored in the current large release period of seismic strain energy in the southeastern margin of the Qinghai-Tibetan plateau.Local seismic risk analysis shows that seismic risk is very high on the Anninghe-Zemuhe and Xiaojiang fault zones.These dangerous zones need follow-up research.In future,it is necessary to combine different research methods to improve the reliability of seismic risk assessment.展开更多
The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detaile...The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detailed geochemical analysis has been carried out on Ganzisi loess-paleosol sequence in Ganzê County of western Sichuan Province. The results indicate that Ganzê loess and paleosol have experienced the incipient stage of chemical weathering in dust source regions, characterized by the decomposition of plagioclase which caused the depletion of mobile elements Na and Ca. The post-depositional chemical weathering is characterized by carbonate dissolution and oxidation of Fe2+. The variations of some geochemical indexes (such as CIA values, Na/K and Fe2+/ Fe3+ ratios) in Ganzisi loess-paleosol sequence indicate a gradually decreased chemical weathering intensity in the dust source regions and deposition areas since 1.15 Ma BP consistent with the general increase of global ice volume, reflecting that the arid trend since 1.15 Ma BP in the southeast Tibetan Plateau is a regional response to the global climate change. The geochemical indexes in this section also reveal an obvious drying step occurred at about 250 ka BP in this region. We interpret this drying step as a result of decreased influence of the Indian southwest summer monsoon. This decrease in monsoon moisture is probably attributable to the uplift of the southeast margin of the Tibetan Plateau at about 250 ka BP.展开更多
The crustal stress and seismic hazard estimation along the southwest segment of the Longmenshan thrust belt after the Wenchuan Earthquake was conducted by hydraulic fracturing for in-situ stress measurements in four b...The crustal stress and seismic hazard estimation along the southwest segment of the Longmenshan thrust belt after the Wenchuan Earthquake was conducted by hydraulic fracturing for in-situ stress measurements in four boreholes at the Ridi, Wasigou, Dahegou, and Baoxing sites in 2003, 2008, and 2010. The data reveals relatively high crustal stresses in the Kangding region (Ridi, Wasigou, and Dahegou sites) before and after the Wenchuan Earthquake, while the stresses were relatively low in the short time after the earthquake. The crustal stress in the southwest of the Longmenshan thrust belt, especially in the Kangding region, may not have been totally released during the earthquake, and has since increased. Furthermore, the Coulomb failure criterion and Byerlee's law are adopted to analyzed in-situ stress data and its implications for fault activity along the southwest segment. The magnitudes of in-situ stresses are still close to or exceed the expected lower bound for fault activity, revealing that the studied region is likely to be active in the future. From the conclusions drawn from our and other methods, the southwest segment of the Longmenshan thrust belt, especially the Baoxing region, may present a future seismic hazard.展开更多
After the Wenchuan MS 8.0 Earthquake, which occurred on May 12, 2008, in Sichuan Province, China, we conducted a series of hydraulic fracturing stress measurements in three 200 m deep boreholes(ZK01, ZK02, and ZK03)...After the Wenchuan MS 8.0 Earthquake, which occurred on May 12, 2008, in Sichuan Province, China, we conducted a series of hydraulic fracturing stress measurements in three 200 m deep boreholes(ZK01, ZK02, and ZK03) drilled in Beichuan and Jiangyou regions near the northeastern segment of Longmenshan fault belt in 2009. These measurements revealed the near-surface stress field in the fault region one year after the Wenchuan MS 8.0 Earthquake. However, the lack of the stress measurements before the earthquake in the same region makes it difficult to understand variations of the in situ stress field(near-surface) by comparative analysis. In order to determine the unknown horizontal principal stresses before the earthquake in Beichuan and Jiangyou regions, the following research method was tentatively applied. Firstly, we calculate the static co-seismic stress field by linear elastic finite element numerical simulation with ANSYS, based on the co-seismic static displacement generated by the Wenchuan MS 8.0 Earthquake along the central Longmenshan fault plane in Beichuan and Jiangyou. Secondly, combining hydraulic fracturing measurements(after the earthquake) with the co-seismic stress(simulation), the magnitudes and orientations of horizontal principal stresses before the earthquake were calculated. Finally, the variation of the in situ stress(near-surface) in Beichuan and Jinagyou, both before and after the Wenchuan MS 8.0 Earthquake, were obtained by comparative analysis. To do this the magnitude of SHmax was decreased on average by 13.01 and 6.54 MPa after the earthquake in ZK02 and ZK03, respectively and the magnitude of SHmin was decreased by 2.54 and 5.29 MPa in ZK02 and ZK03, respectively. Following the earthquake, the average direction of SHmax rotated anticlockwise by 42.5°.展开更多
基金supported by National Natural Science foundation of China(grants No.41571013)China Geology Survey project(grants No.DD20160268)Institute of Geomechanics,Chinese academy of geological sciences basal research fund(grants No.DZLXJK201702)
文摘The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai-Binchuan fault zone. The result shows that there is an at least 25 km- long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the 14C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan- Chenghai fault, the northern part of the Chenghai-Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co-seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3-7.4. Furthermore, combining published age data with the 14C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai-Binchuan fault zone since 17190~50 yr. BP. The in-situ recurrence interval of Mw 7.3-7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金supported by the National Department Public Benefit Research Foundation of China(grant no. 201211077)the Mineral Resources Investigation and Appraisal Project of the Ministry of Land and Resources (grant no.12120114001501)the Fundamental Research Funds for the Central Universities(grant no. 53200859557)
文摘In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.
基金supported by National Natural foundation of China (grants No. 41571013)China Geology Survey project (grants No. DD20160268)
文摘The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.
基金supported by the National Department Public Benefit Research Foundation of China(grant No.201211077)National Natural Science Foundation of China(Grant No.40802033)
文摘The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau (TP) are very useful in neotectonic and paleoclimatic studies. Firstly, the climate in the eastern margin of the TP is mainly controlled by the Indian summer monsoon, and detailed studies on the loess-paleosol sequences in this region can provide valuable terrestrial evidence of past changes in the Indian summer monsoon. Secondly, the river terraces in the eastern margin of the TP are considered to be a sensitive recorder of neotectonism to reflect the timing and amplitude of the TP uplift.
基金funded jointly by the China Geological Survey (Project Grant No. 1212011120163, 12120114002101)the National Natural Science Foundation of China (Project Grant No: 41171009)the basal research fund of Institute of Geomechanics,Chinese Academy of Geological Sciences (DXLXJK201410)
文摘Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the southeastern margin of the Qinghai-Tibetan Plateau since 1500.This paper provides a periodic table of the earthquake strain energy release in the fault zones and the fault block areas.The study shows that seismic strain energy release is strong in the east and south,and weak in the west and north.The overall seismic strain energy release of the Yushu-Xianshuihe-Xiaojiang fault system is consistent with the quasi-periodic pattern.The seismic cycle of some fault zones and fault block areas shows synchronization to a certain extent.The risk cannot be ignored in the current large release period of seismic strain energy in the southeastern margin of the Qinghai-Tibetan plateau.Local seismic risk analysis shows that seismic risk is very high on the Anninghe-Zemuhe and Xiaojiang fault zones.These dangerous zones need follow-up research.In future,it is necessary to combine different research methods to improve the reliability of seismic risk assessment.
基金Supported by the Geological Survey Program (Grant Nos. 1212010741403 and 1212010541401)National Natural Science Foundation of China (Grant No. 404720 88)Basic Research Foundation of Institute of Geomechanics (Grant No. DZL- XJK200711)
文摘The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detailed geochemical analysis has been carried out on Ganzisi loess-paleosol sequence in Ganzê County of western Sichuan Province. The results indicate that Ganzê loess and paleosol have experienced the incipient stage of chemical weathering in dust source regions, characterized by the decomposition of plagioclase which caused the depletion of mobile elements Na and Ca. The post-depositional chemical weathering is characterized by carbonate dissolution and oxidation of Fe2+. The variations of some geochemical indexes (such as CIA values, Na/K and Fe2+/ Fe3+ ratios) in Ganzisi loess-paleosol sequence indicate a gradually decreased chemical weathering intensity in the dust source regions and deposition areas since 1.15 Ma BP consistent with the general increase of global ice volume, reflecting that the arid trend since 1.15 Ma BP in the southeast Tibetan Plateau is a regional response to the global climate change. The geochemical indexes in this section also reveal an obvious drying step occurred at about 250 ka BP in this region. We interpret this drying step as a result of decreased influence of the Indian southwest summer monsoon. This decrease in monsoon moisture is probably attributable to the uplift of the southeast margin of the Tibetan Plateau at about 250 ka BP.
基金supported by the Fund of the Institute of Geomechanics (No. DZLXJK201107)the National Scientific Program of China-Experimental Study on the Technique of In-Situ Stress Measurements and Monitoring (No. SinoProbe-06-03)the auspice of National Key Basic Project (973) (No. 2008CB425702)
文摘The crustal stress and seismic hazard estimation along the southwest segment of the Longmenshan thrust belt after the Wenchuan Earthquake was conducted by hydraulic fracturing for in-situ stress measurements in four boreholes at the Ridi, Wasigou, Dahegou, and Baoxing sites in 2003, 2008, and 2010. The data reveals relatively high crustal stresses in the Kangding region (Ridi, Wasigou, and Dahegou sites) before and after the Wenchuan Earthquake, while the stresses were relatively low in the short time after the earthquake. The crustal stress in the southwest of the Longmenshan thrust belt, especially in the Kangding region, may not have been totally released during the earthquake, and has since increased. Furthermore, the Coulomb failure criterion and Byerlee's law are adopted to analyzed in-situ stress data and its implications for fault activity along the southwest segment. The magnitudes of in-situ stresses are still close to or exceed the expected lower bound for fault activity, revealing that the studied region is likely to be active in the future. From the conclusions drawn from our and other methods, the southwest segment of the Longmenshan thrust belt, especially the Baoxing region, may present a future seismic hazard.
基金supported by the National Scientific Program of China-Experimental Study on the Technique of In-Situ Stress Measurements and Monitoring (No. SinoProbe-06)China Special Research Grant for Non-profit Public Service (No. 201211096)
文摘After the Wenchuan MS 8.0 Earthquake, which occurred on May 12, 2008, in Sichuan Province, China, we conducted a series of hydraulic fracturing stress measurements in three 200 m deep boreholes(ZK01, ZK02, and ZK03) drilled in Beichuan and Jiangyou regions near the northeastern segment of Longmenshan fault belt in 2009. These measurements revealed the near-surface stress field in the fault region one year after the Wenchuan MS 8.0 Earthquake. However, the lack of the stress measurements before the earthquake in the same region makes it difficult to understand variations of the in situ stress field(near-surface) by comparative analysis. In order to determine the unknown horizontal principal stresses before the earthquake in Beichuan and Jiangyou regions, the following research method was tentatively applied. Firstly, we calculate the static co-seismic stress field by linear elastic finite element numerical simulation with ANSYS, based on the co-seismic static displacement generated by the Wenchuan MS 8.0 Earthquake along the central Longmenshan fault plane in Beichuan and Jiangyou. Secondly, combining hydraulic fracturing measurements(after the earthquake) with the co-seismic stress(simulation), the magnitudes and orientations of horizontal principal stresses before the earthquake were calculated. Finally, the variation of the in situ stress(near-surface) in Beichuan and Jinagyou, both before and after the Wenchuan MS 8.0 Earthquake, were obtained by comparative analysis. To do this the magnitude of SHmax was decreased on average by 13.01 and 6.54 MPa after the earthquake in ZK02 and ZK03, respectively and the magnitude of SHmin was decreased by 2.54 and 5.29 MPa in ZK02 and ZK03, respectively. Following the earthquake, the average direction of SHmax rotated anticlockwise by 42.5°.