In manual welding process, skilled welders can adjust the welding parameters to ensure the weld quality through their observation of the weld pool surface. In order to acquire useful information of the weld pool for c...In manual welding process, skilled welders can adjust the welding parameters to ensure the weld quality through their observation of the weld pool surface. In order to acquire useful information of the weld pool for control of the welding process and realizing the automatic welding, the measurement system of DB-GMA W process was established and the weld pool image was obtained by passive vision. Then, three image processing algorithms, Sobel, Canny, and pulse coupled neural network (PCNN) were detailed and applied to extracting the edge of the DB-GMA weld pool. In addition, a scheme was proposed for calculating the length, maximum width and superficial area of the weld pool under different welding conditions. The compared results show that the PCNN algorithm can be used for extracting the edge of the weld pool and the obtained information is more useful and accurate. The calculated results coincide with the actual measurement well, which demonstrates that the proposed algorithm is effective, its imaging processing time is required only 20 ms, which can completely meet the requirement of real-time control.展开更多
Cracks and ruptures always occur during wire drawing process of 42% nickel-iron expansive alloy. In order to study the reasons of these phenomena,a method of metallographic observation in combination with sample elect...Cracks and ruptures always occur during wire drawing process of 42% nickel-iron expansive alloy. In order to study the reasons of these phenomena,a method of metallographic observation in combination with sample electrolysis was used to characterize the non-metallic inclusions in the alloy wire. The results indicate that the inclusions in the alloy are oxidation products during the process of melting. There are single or complex phase inclusions composed of elements such as Al,Si,Ca,Ti,Fe,and O2. Among them,the macro-inclusions are TiO2 compound inclusions formed by the adhesion of Al and Si oxides on them. These inclusions are fragile ones with a low strain rate,as well as a rather high hardness,so that they are the main reason that leads to the surface cracks and ruptures in the alloy wires. The analysis has educed that the key point to enhance the product quality is to promote the cleanliness of the melt,control the types and quantity of non-metal inclusions in the alloy.展开更多
The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, an...The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.展开更多
Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the n...Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.展开更多
In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After ...In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After standard heat treatment and long-time aging, the microstructures of the alloys were observed using XRD, SEM and TEM. The results show that Zr not only inhibits the precipitation of Laves phase at the grain boundary, but also significantly promotes the precipitation of earlobe-like γ' and γ" phases. After long time aging at 680 ℃ for 500 h, the γ" phase grows up obviously and forms a γ'/γ" clad microstructure when the Zr addition is 0.03 wt.%. A large number of fine orbed γ' particles precipitate in the grains and some γ" phase transforms to disk-like c5 phase when the Zr addition increases to 0.05wt.%. The nano-polycrystalline γ' phase precipitates in the grains and there is a little δ phase when the Zr addition is 0.07wt.%. As the Zr addition increases, the amount of Laves phase at the grain boundary decreases at first, and then increases and forms flaky morphology.展开更多
A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriat...A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.展开更多
A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmis...A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmission electron microscopy and powder X-ray diffraction. Capacitive behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge. The obtained nano-MnO2 possesses a well designed loose-assembled hierarchical nanoarchitecture with an appropriate crystallinity which gives rise to excellent performances as an electrode material for supercapacitors. A maximum specific capacitance of 917 F/g has been obtained at a current density of 5 mA/cm2 in 6 mol/L KOH aqueous solution, and a specific capacitance of 210 F/g has been maintained for 500 cycles. As the low cost of MnSO4 and KCr2O7 and the low reaction temperature, the present method avoids the requirements for complicated operations, time/energy-consuming and expensive reagents, and perhaps is ready for the industrialization of nano-MnO2 production.展开更多
To recycle the returned alloy effectively, effects of returns proportion on alloy composition, microstructure and compression properties of superalloy GH4169 were studied by means of scanning electron microscopy(SEM),...To recycle the returned alloy effectively, effects of returns proportion on alloy composition, microstructure and compression properties of superalloy GH4169 were studied by means of scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and thermal-mechanical simulator. The results show that returns addition has no significant effect on the main alloy elements content and the principle precipitates, but increases the volume fraction of Al_2O_3 inclusions, resulting in the increase of oxygen level of GH4169 alloy. Returns addition does not change the elastic and plastic deformation process at room temperature or at 1,150 °C, but high returns proportion GH4169 alloy shows improved compression strength and yield strength. The alloy with 100% returns shows a maximum compression strength 1,153.45 MPa at room temperature, while the alloy with 80% returns has a maximum value 69.3 MPa at 1,150 °C. Returns addition increases fluctuation range and reduces the stability of yield strength and compression strength of GH4169 alloy at room temperature. It is noted that the volume fraction and the size of Al_2O_3, and the fraction of Laves phase reach their maximum values in the GH4169 alloy with 60% returns, which exhibits maximum yield strength of 516.65 MPa at room temperature and 62.17 MPa at 1,150 °C.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semis...Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.展开更多
In this research, the Co-9Al-7. 5 W superalloy was deposited on the 304 austenite stainless steel plate by tungsten inert gas (T1G) cladding technique. The cladding layer shape, dilution, microharclness, microstruct...In this research, the Co-9Al-7. 5 W superalloy was deposited on the 304 austenite stainless steel plate by tungsten inert gas (T1G) cladding technique. The cladding layer shape, dilution, microharclness, microstructure and distribution of alloying elements were investigated. The cladding layer is characterized by large dilution rate, fine microstructure, narrow heat-affected zone, narrow alloying elements segregation, high hardness, high contents of alloying elements and low contents of Fe.展开更多
This article reported the electrochemical performance of a novel cabon microsphere/MnO2nanosheets(CMS/MnO2) composite prepared by a in situ self-limiting deposition method under hydrothermal condition. The results of ...This article reported the electrochemical performance of a novel cabon microsphere/MnO2nanosheets(CMS/MnO2) composite prepared by a in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy(SEM) and transmission electron microscopy(TEM) revealed that MnO2nanosheets homogeneously grew onto the surface of CMS to form a loose-packed and dandelion-like core/shell microstructure. The unique microstructure plays a basic role in electrochemical accessibility of electrolyte to MnO2active material and a fast diffusion rate within the redox phase. The results of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrometry indicated that the prepared CMS/MnO2composite presented high capacitance of 181 F g-1and long cycle life of 61% capacity retention after 2000 charge/discharge cycles in 1 mol/L Na2SO4solution, which show strong promise for high-rate electrochemical capacitive energy storage applications.展开更多
A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage...A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.展开更多
High temperature creep resistance and the correlation between the microstructure and mechanical properties of Mg-9Al-1Si-xY were studied. The study shows that the main strengthening phase Mg2Si presents as coarse Chin...High temperature creep resistance and the correlation between the microstructure and mechanical properties of Mg-9Al-1Si-xY were studied. The study shows that the main strengthening phase Mg2Si presents as coarse Chinese script distributed around the grain boundary after the addition of 1% Si to MggAl alloys. Under stress, the microcrack prefers to occur in the interface between the Mg2Si phase and the matrix. The addition of a small amount of Y into Mg-9Al-1Si alloys results phology of the in refinement of microstructure. MorMg2Si phases change from coarse Chinese script shape to fine polygonal shape. Owing to the improvement of microstructure, the mechanical properties of Mg-9Al-1Si alloys at both ambient and elevated temperatures are increased. The high temperature creep resistant properties of Mg-9Al-1Si-xY rises with the increase of Y content.展开更多
According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically...According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically calculated and analyzed respectively. The results show that the reactions of Mg-TiO2 and Al-TiO2 are very easy to take place and the reaction of producing various suboxides of Ti may occur in Mg-TiO2 and Al-TiO2 reaction system;the adiabatic temperature of Mg-TiO2 becomes lower with increasing mass fraction of Mg. The adiabatic temperature is below 1 800 K when the mass fraction of excessive Mg exceeds 25%;The adiabatic temperature of Al-TiO2 also becomes lower with increasing mass fraction of Al,but it becomes higher with the preheat temperature increment. The adiabatic temperature plateau is the result of Ti melting endotherm;owing to the gasification of a great deal of Mg in Mg-TiO2 reaction process,Mg should be properly excessive in order to get Ti.展开更多
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that...The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ~C. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearin~ process under elevated temperature.展开更多
The influence of the addition of Cu(OH)2 to 6 mol/L KOH alkaline electrolyte on the electrochemical properties of La2Mg0.9Al0.1Ni7.5Co1.5 hydrogen storage alloy electrode was investigated by electron probe X-ray micro...The influence of the addition of Cu(OH)2 to 6 mol/L KOH alkaline electrolyte on the electrochemical properties of La2Mg0.9Al0.1Ni7.5Co1.5 hydrogen storage alloy electrode was investigated by electron probe X-ray microanalysis(EPMA),X-ray diffraction(XRD) and electrochemical measurements. EPMA micrographs and XRD patterns show that the surface of the hydride electrode is plated by metal copper film. The thickness and compactness of Cu film increase with the increment of charge-discharge cycle number. The copper film of the hydride electrode surface can keep the hydrogen storage alloy particle in the electrode interior from oxidizing availably. The addition of Cu(OH)2 to alkaline electrolyte lowers the activation property and the high rate dischargeability of the La2Mg0.9Al0.1Ni7.5Co1.5 hydride electrode,but has no negative effect on the maximum discharge capacity of the hydride electrode. Moreover,it is effective to improve the cyclic stability of the hydride electrode utilizing electrodeposit Cu film on the La2Mg0.9Al0.1Ni7.5Co1.5 hydride electrodes surface.展开更多
The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) ari...The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) arithmetic with SPT was put forward. The research shows that specific tensile mechanical behavior and strain-stress distribution of each district of weld seam can be accurately determined by small punch test. Therefore, mechanical behavior of the inhomogeneous joint can be predicted by a numerical model. The simulation comes to good agreement with experimental data.展开更多
This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces re...This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces relax instead of reconstruction at 0 K, and have little possibility to reconstruct below 40 K. Above 40 K, surface reconstructions take place as collective atomic motion which can be speeded by higher temperature or compressed strain. Several reconstruction patterns with approximate surface energies are found, and electrostatic potentials on them are also provided in comparison with possible microscopic results.展开更多
The deformation and damage mechanism of aluminum alloy (6063) were investigated by 0°, 30°, 45°, 60°and 90°tensile tests and tensile-unload tests with the modified Arcan fixture on the butterf...The deformation and damage mechanism of aluminum alloy (6063) were investigated by 0°, 30°, 45°, 60°and 90°tensile tests and tensile-unload tests with the modified Arcan fixture on the butterfly specimens. The results show: the curves of engineering stress-engineering strain under different stress states are obviously different. There were microvoids in the specimen when 0°direction loading was preformed. The microcracks were produced in the root of notch as the result of the microvoids shearing fracture and then they led to specimen fracture with microcracks being coalesced. With tensile angle increasing, the shear stress in the center of butterfly specimen increases gradually, while the deformation bands become more and more concentrative. In these concentrative deformation bands, the microcracks are produced and then microcracks propagation and coalescence result in specimen fracture. When 90°direction loading is preformed, the shear bands are obviously formed. The G-T-N damage model and the Johnson-cook model were used to simulate 0°tensile test and 90°tensile test respectively. The simulated engineering stress-engineering strain curves fit the measured ones very well.展开更多
基金This work is supported by the National Natural Science Foundation of China under Grant No. 61365011.
文摘In manual welding process, skilled welders can adjust the welding parameters to ensure the weld quality through their observation of the weld pool surface. In order to acquire useful information of the weld pool for control of the welding process and realizing the automatic welding, the measurement system of DB-GMA W process was established and the weld pool image was obtained by passive vision. Then, three image processing algorithms, Sobel, Canny, and pulse coupled neural network (PCNN) were detailed and applied to extracting the edge of the DB-GMA weld pool. In addition, a scheme was proposed for calculating the length, maximum width and superficial area of the weld pool under different welding conditions. The compared results show that the PCNN algorithm can be used for extracting the edge of the weld pool and the obtained information is more useful and accurate. The calculated results coincide with the actual measurement well, which demonstrates that the proposed algorithm is effective, its imaging processing time is required only 20 ms, which can completely meet the requirement of real-time control.
基金Project( ZGS064-A52-036-04) supported by Gansu Provincial Scientific Key Scientific and Technological ProjectProject(2006-05) supported by Difficult Bidding Project of Jinchuan Group Ltd.
文摘Cracks and ruptures always occur during wire drawing process of 42% nickel-iron expansive alloy. In order to study the reasons of these phenomena,a method of metallographic observation in combination with sample electrolysis was used to characterize the non-metallic inclusions in the alloy wire. The results indicate that the inclusions in the alloy are oxidation products during the process of melting. There are single or complex phase inclusions composed of elements such as Al,Si,Ca,Ti,Fe,and O2. Among them,the macro-inclusions are TiO2 compound inclusions formed by the adhesion of Al and Si oxides on them. These inclusions are fragile ones with a low strain rate,as well as a rather high hardness,so that they are the main reason that leads to the surface cracks and ruptures in the alloy wires. The analysis has educed that the key point to enhance the product quality is to promote the cleanliness of the melt,control the types and quantity of non-metal inclusions in the alloy.
基金Project(51464031)supported by the National Natural Science Foundation of China
文摘The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.
基金supported by the Open Foundation of Key Laboratory of the Ministry of Educationof Nonferrous Metal Alloys and Processes(No.EKL09002)The Ph.D.Fund Project of Lanzhou University of Science and Technology(No.BS01200904)
文摘Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.
基金financially supported by the Natural Science Foundation of Gansu Province,China (No.3ZS042-B25-028)
文摘In order to investigate the effect of Zr addition on the precipitations of K4169 superalloy, a manual electric arc furnace was used to prepare the superalloy with different Zr addition from 0.03wt.% to 0.07wt%. After standard heat treatment and long-time aging, the microstructures of the alloys were observed using XRD, SEM and TEM. The results show that Zr not only inhibits the precipitation of Laves phase at the grain boundary, but also significantly promotes the precipitation of earlobe-like γ' and γ" phases. After long time aging at 680 ℃ for 500 h, the γ" phase grows up obviously and forms a γ'/γ" clad microstructure when the Zr addition is 0.03 wt.%. A large number of fine orbed γ' particles precipitate in the grains and some γ" phase transforms to disk-like c5 phase when the Zr addition increases to 0.05wt.%. The nano-polycrystalline γ' phase precipitates in the grains and there is a little δ phase when the Zr addition is 0.07wt.%. As the Zr addition increases, the amount of Laves phase at the grain boundary decreases at first, and then increases and forms flaky morphology.
基金This work was financially supported by National Natural Science Foundation of China No. 51205179.
文摘A two-dimensional axisymmetric mathematical model of weld pool of pulsed TIG welding was established. Numerical simulation for weld pool of pulsed TIG welding was done using FLUENT software by selecting the appropriate boundary conditions and strongly coupled control equations. The distributions of temperature field and flow field of weld pool under the periodic change of welding current were obtained. According to the maximum temperature of upper and lower surface of workpiece and depth and width of weld pool, the distributions of temperature field and flow field under different pulsed frequencies and current duty cycles were obtained and periodic variation was analyzed under pulsed current. The analysis results show that with the increase of pulsed frequency, weld pool width increases slightly while depth decreases slightly, and with the increase of current duty cycle, the width and depth of weld pool both increase significantly, and the depth increases greatly.
基金supported by the National Natural Science Foundation of China (51203071,51363014 and 21163010)the Key Project of Chinese Ministry of Education (212183)+1 种基金the Program for Hongliu Young Teachers in Lanzhou University of Technology (201201)the Natural Science Funds for Distinguished Young Scholars of Gansu Province (1111RJDA012)
文摘A novel bird nest-like nanostructured MnO2(BNNS-MnO2) was prepared by a facile and cost-effective strategy. Their structures and morphologies were characterized by field emission scanning electron microscopy, transmission electron microscopy and powder X-ray diffraction. Capacitive behaviors were investigated by cyclic voltammetry and galvanostatic charge-discharge. The obtained nano-MnO2 possesses a well designed loose-assembled hierarchical nanoarchitecture with an appropriate crystallinity which gives rise to excellent performances as an electrode material for supercapacitors. A maximum specific capacitance of 917 F/g has been obtained at a current density of 5 mA/cm2 in 6 mol/L KOH aqueous solution, and a specific capacitance of 210 F/g has been maintained for 500 cycles. As the low cost of MnSO4 and KCr2O7 and the low reaction temperature, the present method avoids the requirements for complicated operations, time/energy-consuming and expensive reagents, and perhaps is ready for the industrialization of nano-MnO2 production.
基金financially supported by the National Key Basic Research Program of China under grant No.2012CB722806
文摘To recycle the returned alloy effectively, effects of returns proportion on alloy composition, microstructure and compression properties of superalloy GH4169 were studied by means of scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and thermal-mechanical simulator. The results show that returns addition has no significant effect on the main alloy elements content and the principle precipitates, but increases the volume fraction of Al_2O_3 inclusions, resulting in the increase of oxygen level of GH4169 alloy. Returns addition does not change the elastic and plastic deformation process at room temperature or at 1,150 °C, but high returns proportion GH4169 alloy shows improved compression strength and yield strength. The alloy with 100% returns shows a maximum compression strength 1,153.45 MPa at room temperature, while the alloy with 80% returns has a maximum value 69.3 MPa at 1,150 °C. Returns addition increases fluctuation range and reduces the stability of yield strength and compression strength of GH4169 alloy at room temperature. It is noted that the volume fraction and the size of Al_2O_3, and the fraction of Laves phase reach their maximum values in the GH4169 alloy with 60% returns, which exhibits maximum yield strength of 516.65 MPa at room temperature and 62.17 MPa at 1,150 °C.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
基金financially supported by the National Natural Science Foundation of China(No.51464031)
文摘Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.
基金Acknowledgements This study was financially supported by West Light Foundation of the Chinese Academy of Science (Grant No. 0901ZBB066) , the Natural Science Foundation of Gansu Province (Grant No. 099 RJYA018 ).
文摘In this research, the Co-9Al-7. 5 W superalloy was deposited on the 304 austenite stainless steel plate by tungsten inert gas (T1G) cladding technique. The cladding layer shape, dilution, microharclness, microstructure and distribution of alloying elements were investigated. The cladding layer is characterized by large dilution rate, fine microstructure, narrow heat-affected zone, narrow alloying elements segregation, high hardness, high contents of alloying elements and low contents of Fe.
基金supported by the National Natural Science Foundation of China(No.51363014,51362018,51203071 and 21163010)the Key Project of Chinese Ministry of Education(No.212183)the Natural Science Funds for Distinguished Young Scholars of Gansu Province(No1111RJDA012)
文摘This article reported the electrochemical performance of a novel cabon microsphere/MnO2nanosheets(CMS/MnO2) composite prepared by a in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy(SEM) and transmission electron microscopy(TEM) revealed that MnO2nanosheets homogeneously grew onto the surface of CMS to form a loose-packed and dandelion-like core/shell microstructure. The unique microstructure plays a basic role in electrochemical accessibility of electrolyte to MnO2active material and a fast diffusion rate within the redox phase. The results of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrometry indicated that the prepared CMS/MnO2composite presented high capacitance of 181 F g-1and long cycle life of 61% capacity retention after 2000 charge/discharge cycles in 1 mol/L Na2SO4solution, which show strong promise for high-rate electrochemical capacitive energy storage applications.
基金supported by National Natural Science Foundation of China (No.50275028)
文摘A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.
文摘High temperature creep resistance and the correlation between the microstructure and mechanical properties of Mg-9Al-1Si-xY were studied. The study shows that the main strengthening phase Mg2Si presents as coarse Chinese script distributed around the grain boundary after the addition of 1% Si to MggAl alloys. Under stress, the microcrack prefers to occur in the interface between the Mg2Si phase and the matrix. The addition of a small amount of Y into Mg-9Al-1Si alloys results phology of the in refinement of microstructure. MorMg2Si phases change from coarse Chinese script shape to fine polygonal shape. Owing to the improvement of microstructure, the mechanical properties of Mg-9Al-1Si alloys at both ambient and elevated temperatures are increased. The high temperature creep resistant properties of Mg-9Al-1Si-xY rises with the increase of Y content.
文摘According to the thermodynamics theories,the reactive Gibbs free energies,the reactive adiabatic temperature,the melting rate of Ti and the gasification mass of Mg in the Mg-TiO2 and Al-TiO2 systems were theoretically calculated and analyzed respectively. The results show that the reactions of Mg-TiO2 and Al-TiO2 are very easy to take place and the reaction of producing various suboxides of Ti may occur in Mg-TiO2 and Al-TiO2 reaction system;the adiabatic temperature of Mg-TiO2 becomes lower with increasing mass fraction of Mg. The adiabatic temperature is below 1 800 K when the mass fraction of excessive Mg exceeds 25%;The adiabatic temperature of Al-TiO2 also becomes lower with increasing mass fraction of Al,but it becomes higher with the preheat temperature increment. The adiabatic temperature plateau is the result of Ti melting endotherm;owing to the gasification of a great deal of Mg in Mg-TiO2 reaction process,Mg should be properly excessive in order to get Ti.
基金"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)
文摘The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ~C. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearin~ process under elevated temperature.
基金Project(50171021) supported by the National Natural Science Foundation of China
文摘The influence of the addition of Cu(OH)2 to 6 mol/L KOH alkaline electrolyte on the electrochemical properties of La2Mg0.9Al0.1Ni7.5Co1.5 hydrogen storage alloy electrode was investigated by electron probe X-ray microanalysis(EPMA),X-ray diffraction(XRD) and electrochemical measurements. EPMA micrographs and XRD patterns show that the surface of the hydride electrode is plated by metal copper film. The thickness and compactness of Cu film increase with the increment of charge-discharge cycle number. The copper film of the hydride electrode surface can keep the hydrogen storage alloy particle in the electrode interior from oxidizing availably. The addition of Cu(OH)2 to alkaline electrolyte lowers the activation property and the high rate dischargeability of the La2Mg0.9Al0.1Ni7.5Co1.5 hydride electrode,but has no negative effect on the maximum discharge capacity of the hydride electrode. Moreover,it is effective to improve the cyclic stability of the hydride electrode utilizing electrodeposit Cu film on the La2Mg0.9Al0.1Ni7.5Co1.5 hydride electrodes surface.
文摘The small punch test technique (SPT) was used to evaluate the mechanical properties of various materials and the basic method to test material tensile mechanics peqeormance from an inverse finite element ( FE) arithmetic with SPT was put forward. The research shows that specific tensile mechanical behavior and strain-stress distribution of each district of weld seam can be accurately determined by small punch test. Therefore, mechanical behavior of the inhomogeneous joint can be predicted by a numerical model. The simulation comes to good agreement with experimental data.
基金supported by the National Natural Science Foundation of China (Grant No. 10964003)the Natural Science Foundation of Gansu Province (Grant No. 096RJZA102)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (GrantNo. 20096201120002)the China Postdoctoral Science Foundation (Grant No. 20100470886)
文摘This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces relax instead of reconstruction at 0 K, and have little possibility to reconstruct below 40 K. Above 40 K, surface reconstructions take place as collective atomic motion which can be speeded by higher temperature or compressed strain. Several reconstruction patterns with approximate surface energies are found, and electrostatic potentials on them are also provided in comparison with possible microscopic results.
基金Project (2004CCA04900) supported by Ministry of Science and Technology of China
文摘The deformation and damage mechanism of aluminum alloy (6063) were investigated by 0°, 30°, 45°, 60°and 90°tensile tests and tensile-unload tests with the modified Arcan fixture on the butterfly specimens. The results show: the curves of engineering stress-engineering strain under different stress states are obviously different. There were microvoids in the specimen when 0°direction loading was preformed. The microcracks were produced in the root of notch as the result of the microvoids shearing fracture and then they led to specimen fracture with microcracks being coalesced. With tensile angle increasing, the shear stress in the center of butterfly specimen increases gradually, while the deformation bands become more and more concentrative. In these concentrative deformation bands, the microcracks are produced and then microcracks propagation and coalescence result in specimen fracture. When 90°direction loading is preformed, the shear bands are obviously formed. The G-T-N damage model and the Johnson-cook model were used to simulate 0°tensile test and 90°tensile test respectively. The simulated engineering stress-engineering strain curves fit the measured ones very well.