Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadba...The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadband impedance spectrum measurement of solar cells,which was composed of an oscilloscope,a signal generator,and a sampling resistor.The results demonstrate concurrent accurate measurement of the impedance spectrum(50 Hz-0.1 MHz)and direct current voltametric characteristics.Comparative analysis with Keithley 2450 data yields a global relative error of approximately 6.70%,affirming the accuracy.Among excitation signals(sine,square,triangle,pulse waves),sine wave input yields the most accurate data,with a root mean square error of approximately 13.3016 and a global relative error of approximately 4.25%compared to theoretical data.Elevating reference resistance expands the half circle in the impedance spectrum.Proximity of reference resistance to that of the solar cell enhances the accuracy by mitigating line resistance influence.Measurement error is lower in high-frequency regions due to a higher signal-to-noise ratio.展开更多
The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study th...The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.展开更多
A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar at...The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.展开更多
The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not ...The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.展开更多
In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning funct...In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.展开更多
The wavelength variation of a laser-dye-type random laser is observed experimentally.It is found that the emitting wavelength of a random laser changes with the change of concentration of the gain material.Also,the ac...The wavelength variation of a laser-dye-type random laser is observed experimentally.It is found that the emitting wavelength of a random laser changes with the change of concentration of the gain material.Also,the actual radiation wavelength is influenced by the pumping rate of the source,the cavity competition and the concentration of scatterers.展开更多
Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the ...Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the traditional ultrasonic testing method to perform efficient and accurate testing.In this study,ultrasound phased array detection technology was applied to the non-destructive testing of aviation turbine disks:(i)A phased array ultrasonic c-scan device for detecting aerospace turbine disk cracks(PAUDA)was developed which consists of phased array ultrasonic,transducers,a computer,a displacement encoder,and a rotating scanner;(ii)The influence of the detection parameters include frequency,wave-type,and elements number of the ultrasonic phased array probe on the detection results on the near-surface and the far surface of the aerospace turbine disk is analyzed;(iii)Specimens with flat-bottom-hole(FBH)defects were scanned by the developed PAUDA and the results were analyzed and compared with the conventional single probe ultrasonic water immersion testing.The experiment shows that by using the ultrasonic phased array c-scan to scan the turbine disk the accuracy of the detection can be significantly improved which is of greater accuracy and higher efficiency than traditional immersion testing.展开更多
When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the...When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the problem an improved anisotropic diffu- sion filtering model is proposed. Firstly, a novel diffusion function is introduced based on Perona and Malik model, which well overcomes the high rate of convergence. Secondly, the gradient threshold is modified to an adaptive estimation function, so it is bet- ter at adaptive threshold regulations according to the pixels and iteration times. Finally, the edges are extracted from the restored im- ages and the results are evaluated quantificationally. It is shown from the experiments that the proposed method is effective not only in noise reduction but also in details preserved.展开更多
Numerical 2D simulation and research on internal flow field and external flow field of rocket motor nozzle using FLUENT software. Analyze the flow condition of internal flow field and external flow field, and accordin...Numerical 2D simulation and research on internal flow field and external flow field of rocket motor nozzle using FLUENT software. Analyze the flow condition of internal flow field and external flow field, and according to add in the amount of the different gas components, obtain the clear distribution of contour of density flow field, pressure flow field and various material components and so on. Simulation results agree with the results observed from the test on the ground, and provide reference for solid rocket motor development.展开更多
A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack leng...A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack length was studied.The numerical and experimental results both showed that the increase of the crack length enhanced the crack heating response under specific test conditions.A particular form of calculated response signal,which is linearly related to the crack length,was introduced to provide a quantitative evaluation of crack length.展开更多
Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In t...Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.展开更多
The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which...The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which is the main work part in the rotor system,is almost ignored.Here,a dynamic model of the rotor system with loose disc caused by the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic surface topography,the vibration characteristics of the system are analyzed and discussed by the number simulation,and verified by the experiment.The results show that the speed of the shaft,the contact stiffness,the clearance between the disc and shaft,the damping of the disc and the rotational damping have an influence on the rotation state of the disc.When the rotation speed of the disc and the shaft are same,the collision frequency is mainly composed of one frequency multiplication component and very weak high frequency multiplication components.When the rotation speed of the disc and the shaft is close,the vibration of the disc occurs a beat vibration phenomenon in the horizontal direction.Simultaneously,a periodical similar beat vibration phenomenon also occurs in the waveform of the disc-shaft displacement difference.The collision frequency is mainly composed of a low frequency and a weak high frequency component.When the rotation speed of the disc and the shaft has great difference,the collision frequency is mainly composed of one frequency multiplication,a few weak high frequency multiplication components and a few low frequency multiplication component.With the reduction of the relative speed of the disc,the trajectory of the disc changes from circle-shape to inner eight-shape,and then to circle-shape.In the inner eight-shape,the inner ring first gradually becomes smaller and then gradually becomes larger,and the outer ring is still getting smaller.The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with the loose disc.展开更多
According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown ...According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown nonlinear exosystem.The uncertainty of parameters is treated by an adaptive control law.And a new internal model is proposed to estimate the exotic disturbances.By using the Lyapunov analysis method,the control law is designed to ensure that the system's state variables asymptotically converge to stable,and the disturbances can be completely rejected.Finally,numerical simulations are included to demonstrate the performance of the presented controller.展开更多
At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect de...At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research.展开更多
Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme ...Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal.A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that,a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.展开更多
We numerically study the effect of the quantum coins on the two-particle quantum walks on an infinite line. Both non-interacting and interacting particles are considered. The joint probability as well as the bunching ...We numerically study the effect of the quantum coins on the two-particle quantum walks on an infinite line. Both non-interacting and interacting particles are considered. The joint probability as well as the bunching or anti- bunching behavior are greatly affected by the phase factors in the coin operation. Further, the spatial correlation can be maximized by choosing appropriate coin parameters. The entanglement between the two particles can be adjusted in the same manner.展开更多
We report the novel dynamic of 3D dissipative vortices supported by an umbrella-shaped potential (USP) in the 3D complex Ginzburg-Landau (GGL) equation with the cubic-quintic nonlinearity. The stable solution of v...We report the novel dynamic of 3D dissipative vortices supported by an umbrella-shaped potential (USP) in the 3D complex Ginzburg-Landau (GGL) equation with the cubic-quintic nonlinearity. The stable solution of vortices with intrinsic vorticity S=1 and 2 are obtained in the 3D GGL equation. An appropriate USP forces the vortices continuously to throw out fundamental 3D solitons (light bullets) along the folding umbrella. The dynamic regions of the strength of the potential with the changing number of folding umbrella are analyzed, and the rate of throwing increases with the strength of the potential. A weak potential cannot provide vortices with enough force. Then, the vortices will be stretched into polygons. However, a strong potential will destroy the vortices.展开更多
This paper investigates the properties of silicon cells(SI)and perovskite solar cells(PSC)under bias condition by using impedance spectroscopy.The parallel resistances R_(p) of SI and PSC are found to decrease with in...This paper investigates the properties of silicon cells(SI)and perovskite solar cells(PSC)under bias condition by using impedance spectroscopy.The parallel resistances R_(p) of SI and PSC are found to decrease with increasing bias,but the capacitance C_(p) shows the opposite trend.Comparing Rp with C_(p),bias has a greater impact on the C_(p) of both cells.展开更多
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金supported by National Natural Science Foundation of China(Nos.12064027,62065014,12464010)2022 Jiangxi Province Highlevel and High-skilled Leading Talent Training Project Selected(No.63)+1 种基金Jiujiang“Xuncheng Talents”(No.JJXC2023032)Nanchang Hangkong University Education Reform Project(No.JY21069).
文摘The current impedance spectroscopy measurement techniques face difficulties in diagnosing solar cell faults due to issues such as cost,complexity,and accuracy.Therefore,a novel system was developed for precise broadband impedance spectrum measurement of solar cells,which was composed of an oscilloscope,a signal generator,and a sampling resistor.The results demonstrate concurrent accurate measurement of the impedance spectrum(50 Hz-0.1 MHz)and direct current voltametric characteristics.Comparative analysis with Keithley 2450 data yields a global relative error of approximately 6.70%,affirming the accuracy.Among excitation signals(sine,square,triangle,pulse waves),sine wave input yields the most accurate data,with a root mean square error of approximately 13.3016 and a global relative error of approximately 4.25%compared to theoretical data.Elevating reference resistance expands the half circle in the impedance spectrum.Proximity of reference resistance to that of the solar cell enhances the accuracy by mitigating line resistance influence.Measurement error is lower in high-frequency regions due to a higher signal-to-noise ratio.
基金Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7023)。
文摘The problem of three-dimensional(3D) acoustic scattering in a complex medium has aroused considerable interest of researchers for many years. An ultrasonic scattered field calculating technique is proposed to study the scattering echo from strongly scattered materials in a two-layer medium in this work. Firstly, with the high frequency stationary phase method,the Green's function of two-layer fluid media is derived. And then based on the idea of integral equation discretization,the Green's function method is extended to two-layer fluid media to derive the scattering field expression of defects in a complex medium. With this method, the scattering field of 3D defect in a two-layer medium is calculated and the characteristics of received echoes are studied. The results show that this method is able to solve the scattering P wave field of 3D defect with arbitrary shape at any scattering intensity in two-layer media. Considering the circumstance of waterimmersion ultrasonic non-destructive test(NDT), the scattering sound field characteristics of different types of defects are analyzed by simulation, which will help to optimize the detection scheme and corresponding imaging method in practice so as to improve the detection quality.
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.
基金Project(2006-8) supported by the Huadian International Corporation Limited
文摘The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.
基金supported by National Natural Science Foundation of China(Grant Nos.51675258,51261024,51265039)State Key Laboratory of Mechani-cal System and Vibration(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology(Grant No.6142003190210).
文摘The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.
文摘In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60677006 and 11074024.
文摘The wavelength variation of a laser-dye-type random laser is observed experimentally.It is found that the emitting wavelength of a random laser changes with the change of concentration of the gain material.Also,the actual radiation wavelength is influenced by the pumping rate of the source,the cavity competition and the concentration of scatterers.
基金This work was funded by the National Natural Science Foundation of China[Grant Nos.11664027,11374134]The National Natural Science Foundation of Jiangxi Province[Grant No.20161BAB216101]+1 种基金Key Laboratory of Non-Destructive Testing and Monitoring Technology for High-Speed Transport Facilities of the Ministry of Industry and Information Technology,Nanjing University of Aeronautics and AstronauticsThe Key Laboratory of Nondestructive Testing of Ministry of Education Nanchang Hang Kong University,Nanchang,China.
文摘Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the traditional ultrasonic testing method to perform efficient and accurate testing.In this study,ultrasound phased array detection technology was applied to the non-destructive testing of aviation turbine disks:(i)A phased array ultrasonic c-scan device for detecting aerospace turbine disk cracks(PAUDA)was developed which consists of phased array ultrasonic,transducers,a computer,a displacement encoder,and a rotating scanner;(ii)The influence of the detection parameters include frequency,wave-type,and elements number of the ultrasonic phased array probe on the detection results on the near-surface and the far surface of the aerospace turbine disk is analyzed;(iii)Specimens with flat-bottom-hole(FBH)defects were scanned by the developed PAUDA and the results were analyzed and compared with the conventional single probe ultrasonic water immersion testing.The experiment shows that by using the ultrasonic phased array c-scan to scan the turbine disk the accuracy of the detection can be significantly improved which is of greater accuracy and higher efficiency than traditional immersion testing.
基金Supported by Natural Science Foundation of China(61163047)Natural Science Foundation of Jiangxi Province(20114BAB201036)
文摘When DR (Digital Radiography) images are filtered, it is necessary to preserve the edges and key details. But the existing methods may inevitably take fine details mistaken for noise to remove. In order to solve the problem an improved anisotropic diffu- sion filtering model is proposed. Firstly, a novel diffusion function is introduced based on Perona and Malik model, which well overcomes the high rate of convergence. Secondly, the gradient threshold is modified to an adaptive estimation function, so it is bet- ter at adaptive threshold regulations according to the pixels and iteration times. Finally, the edges are extracted from the restored im- ages and the results are evaluated quantificationally. It is shown from the experiments that the proposed method is effective not only in noise reduction but also in details preserved.
文摘Numerical 2D simulation and research on internal flow field and external flow field of rocket motor nozzle using FLUENT software. Analyze the flow condition of internal flow field and external flow field, and according to add in the amount of the different gas components, obtain the clear distribution of contour of density flow field, pressure flow field and various material components and so on. Simulation results agree with the results observed from the test on the ground, and provide reference for solid rocket motor development.
基金supported by the Open Foundation of Key Laboratory of Nondestructive Testing of Ministry of Education of Nanchang Aeronautical University
文摘A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack length was studied.The numerical and experimental results both showed that the increase of the crack length enhanced the crack heating response under specific test conditions.A particular form of calculated response signal,which is linearly related to the crack length,was introduced to provide a quantitative evaluation of crack length.
基金Project supported by Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB)(Grant No.21C-OP-202013)the National Natural Science Foundation of China(Grant No.12064027)+1 种基金the International Science and Technology Cooperation Program of China(Grant No.2015DFA61800)the Scientific Research Fund of Jiangxi Provincial Education Department,China(Grant No.GJJ180973).
文摘Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
基金National Natural Science Foundation of China(Grant Nos.51675258,51875301,51265039)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology of China(Grant No.6142003190210).
文摘The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which is the main work part in the rotor system,is almost ignored.Here,a dynamic model of the rotor system with loose disc caused by the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic surface topography,the vibration characteristics of the system are analyzed and discussed by the number simulation,and verified by the experiment.The results show that the speed of the shaft,the contact stiffness,the clearance between the disc and shaft,the damping of the disc and the rotational damping have an influence on the rotation state of the disc.When the rotation speed of the disc and the shaft are same,the collision frequency is mainly composed of one frequency multiplication component and very weak high frequency multiplication components.When the rotation speed of the disc and the shaft is close,the vibration of the disc occurs a beat vibration phenomenon in the horizontal direction.Simultaneously,a periodical similar beat vibration phenomenon also occurs in the waveform of the disc-shaft displacement difference.The collision frequency is mainly composed of a low frequency and a weak high frequency component.When the rotation speed of the disc and the shaft has great difference,the collision frequency is mainly composed of one frequency multiplication,a few weak high frequency multiplication components and a few low frequency multiplication component.With the reduction of the relative speed of the disc,the trajectory of the disc changes from circle-shape to inner eight-shape,and then to circle-shape.In the inner eight-shape,the inner ring first gradually becomes smaller and then gradually becomes larger,and the outer ring is still getting smaller.The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with the loose disc.
基金National Natural Science Foundation of China(No.61663030,No.61663032)Natural Science Foundation of Jiangxi Province,China(No.20142BAB207021)+4 种基金the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2016-S350)the Foundation of Jiangxi Educational Committee,China(No.GJJ150753)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province,China(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education,China(No.ZD29529005)The Twelfth "Sanxiao" College Students Extracurricular Innovation and Entrepreneurship Practice and Training Project of Nanchang Hangkong University,China(No.2017ZD021)
文摘According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown nonlinear exosystem.The uncertainty of parameters is treated by an adaptive control law.And a new internal model is proposed to estimate the exotic disturbances.By using the Lyapunov analysis method,the control law is designed to ensure that the system's state variables asymptotically converge to stable,and the disturbances can be completely rejected.Finally,numerical simulations are included to demonstrate the performance of the presented controller.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904059,41066001,61072131,61177096)Aeronautical Science Foundation of China (Grant No. 2010ZB56004)+3 种基金the Scientific Research Foundation of Jiangxi Provincial Department of Education,China (Grant No. GJJ11176)the Open Fund of the Key Laboratory of Nondestructive Testing(Ministry of Education,Nanchang Hangkong University) (Grant No. ZD201029005)the Natural Science Foundation of JiangxiProvince,China (Grant No. 2009GZW0024)the Graduate Innovation Base of Jiangxi Province,China
文摘At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11874151, and 11834003)the Fundamental Research Funds for the Central Universities, China+1 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Chinathe Young Top-Notch Talent Support Program of Shanghai, China。
文摘Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal.A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that,a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11104128,61205119 and 41206084the Natural Science Foundation of Jiangxi-Provincial Office of Education under Grant No GJJ13485the Doctor Start-up Foundation of Nanchang Hangkong University under Grant No EA201008229
文摘We numerically study the effect of the quantum coins on the two-particle quantum walks on an infinite line. Both non-interacting and interacting particles are considered. The joint probability as well as the bunching or anti- bunching behavior are greatly affected by the phase factors in the coin operation. Further, the spatial correlation can be maximized by choosing appropriate coin parameters. The entanglement between the two particles can be adjusted in the same manner.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61205119, 41066001 and 11104128, the Natural Science Foundation of Jiangxi Province under Grant No 20132BAB212001, and the Natural Science Foundation of Jiangxi Province Office of Education under Grant No G JJ13485.
文摘We report the novel dynamic of 3D dissipative vortices supported by an umbrella-shaped potential (USP) in the 3D complex Ginzburg-Landau (GGL) equation with the cubic-quintic nonlinearity. The stable solution of vortices with intrinsic vorticity S=1 and 2 are obtained in the 3D GGL equation. An appropriate USP forces the vortices continuously to throw out fundamental 3D solitons (light bullets) along the folding umbrella. The dynamic regions of the strength of the potential with the changing number of folding umbrella are analyzed, and the rate of throwing increases with the strength of the potential. A weak potential cannot provide vortices with enough force. Then, the vortices will be stretched into polygons. However, a strong potential will destroy the vortices.
基金supported by the National Natural Science Foundation of China(Nos.12064027 and 62065014)the 2022 Jiangxi Province High-level and High-skilled Leading Talent Training Project Selected(No.63)+3 种基金the Jiangxi Provincial Department of Education Science and Technology Key Project(No.GJJ2204302)the Jiujiang Municipal Science and Technology Program(Natural Science Foundation-S2022KXJJ001,Innovative Talents-S2022QNZZ070)(2022-2023)the Special Fund for Graduate Innovation(Nos.YC2022-118 and YC2022-113)the Jiujiang“Xuncheng Talents”(No.JJXC2023032)。
文摘This paper investigates the properties of silicon cells(SI)and perovskite solar cells(PSC)under bias condition by using impedance spectroscopy.The parallel resistances R_(p) of SI and PSC are found to decrease with increasing bias,but the capacitance C_(p) shows the opposite trend.Comparing Rp with C_(p),bias has a greater impact on the C_(p) of both cells.