Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-...Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.展开更多
基金Supported by the National Bauic Research Program of China under Grant No 2006CB202600, Funds of Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No KGCX2-YW-326, the National Natural Science Foundation of China under Grant No 20703046, and the National Science Foundation of Nantong University under Grant No 08Z067.
文摘Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.