期刊文献+
共找到503篇文章
< 1 2 26 >
每页显示 20 50 100
Baoziwan-Majiashan Area of Jiyuan Oilfield Analysis of Reservoir Characteristics and Main Control Factors in Long 4 5 Section
1
作者 Zhengxi Cui Zhipeng Zhang Mingling Shen 《Open Journal of Yangtze Oil and Gas》 2024年第2期48-64,共17页
Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir ... Based on the sheet, scanning electron microscope and high pressure mercury analysis method, this paper takes Jiyuan oilfield-Ma Jia mountain district 4 5 sandstone reservoir as the research object, from the reservoir petrology, pore type and porosity, permeability, the system analyzed the reservoir characteristics and its control factors. The results show that the sandstone in the 4 5 section of Baoziwan-Majiashan area of Jiyuan oilfield is fine in size and high in filling content. The pore types were dominated by intergranular pores and dissolved pores, with a low face rate. The reservoir property is relatively poor, with mean porosity of 11.11% and mean permeability of 1.16 × 10<sup>−</sup><sup>3</sup> µm<sup>2</sup>. In the low porous, low otonic background, the development of relatively high pore hypertonic areas. Compaction and cementation should play a destructive role in reservoir properties, and dissolution should play a positive role in reservoir properties. Compaction adjusts the migration of clay minerals and miscellaneous bases in the original sediment in the study area, greatly reducing the porosity and permeability of the reservoir;the development of the cement cement, carbonate cementation and some quartz secondary compounds reduces the storage space;the dissolution effect, especially the secondary dissolution pores of the reservoir, which obviously improves the properties of the reservoir. 展开更多
关键词 Ordos Basin Jiyuan Area Reservoir Characteristics Reservoir Control Factor Long 4 5 Section
下载PDF
Influences of different alkaline and acidic diagenetic environments on diagenetic evolution and reservoir quality of alkaline lake shales
2
作者 LI Changzhi GUO Pei +2 位作者 XU Jinghong ZHONG Kai WEN Huaguo 《Petroleum Exploration and Development》 SCIE 2024年第1期97-113,共17页
Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in differen... Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development. 展开更多
关键词 shale diagenesis alkaline environment authigenic minerals dissolution Permian Fengcheng Formation Mahu Sag Junggar Basin
下载PDF
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:2
3
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
Reservoir heterogeneity controls of CO_(2)-EOR and storage potentials in residual oil zones:Insights from numerical simulations 被引量:1
4
作者 Yan-Yong Wang Xiao-Guang Wang +4 位作者 Ren-Cheng Dong Wen-Chao Teng Shi-Yuan Zhan Guang-Yong Zeng Cun-Qi Jia 《Petroleum Science》 SCIE EI CSCD 2023年第5期2879-2891,共13页
Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it h... Residual oil zones(ROZs)have large potential for CO_(2)enhanced oil recovery(EOR)and geologic storage.During CO_(2)injection,the migration of CO_(2)in ROZs controls the performance of both EOR and storage.However,it has not been clearly visualized and understood that how geological heterogeneity factors control the transport of CO_(2)in ROZs.In this study,the oil recovery performance and geologic storage potential during continuous CO_(2)injection in a representative ROZ are studied based on geostatistical modelling and high-fidelity three-phase flow simulation.We examined the influence of autocorrelation length of permeability,global heterogeneity(DykstraeParsons coefficient),and permeability anisotropy on cumulative oil recovery and CO_(2)retention fraction.Simulation results indicate that,as the permeability autocorrelation length increases,the cumulative oil recovery and CO_(2)storage efficiency decrease.This results from the accelerated migration of CO_(2)along high permeability zones(i.e.,gas channeling).The increase in global heterogeneity and permeability anisotropies can lead to low oil recovery and poor CO_(2)sequestration performance,depending on the degree of CO_(2)channeling.The net utilization ratio of CO_(2)(CO_(2)retained/oil produced)unfavorably increases with both autocorrelation length and Dykstra eParsons coefficient,but decreases with the increase in kv/kh.Such a decrease is attributed to enlarged swept volume induced by gravity override.The study provides important implications for fieldscale CO_(2)EOR and storage applications in ROZs. 展开更多
关键词 Residual oil zones CO_(2)injection Enhanced oil recovery Geologic sequestration
下载PDF
Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir 被引量:1
5
作者 Zhou-Hua Wang Bo-Wen Sun +5 位作者 Ping Guo Shuo-Shi Wang Huang Liu Yong Liu Dai-Yu Zhou Bo Zhou 《Petroleum Science》 SCIE CAS CSCD 2021年第3期870-882,共13页
Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of f... Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively. 展开更多
关键词 Flue gas storage Enhanced oil recovery Flue gas water-alternating gas Material balance model Injection strategy
下载PDF
The control effect of low-amplitude structure on oil-gaswater enrichment and development performance of ultra-low permeability reservoirs 被引量:1
6
作者 WANG Jianmin ZHANG San +4 位作者 DU Wei LI Le QIAO Zhen ZHANG Jun DUAN Mengyue 《Petroleum Exploration and Development》 2019年第4期767-778,共12页
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were... Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable. 展开更多
关键词 ultra-low PERMEABILITY RESERVOIRS LOW-AMPLITUDE structure OIL-GAS-WATER ENRICHMENT development dynamics control effect
下载PDF
Finite Element Investigation of Flow Field Below Asymmetric Drill Bits for Reverse Circulation in Drilling Tight Oil and Gas Reservoirs
7
作者 Yi Luo Erxiu Shi +2 位作者 Yin Feng Boyun Guo Liehui Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期105-122,共18页
Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of ... Development of unconventional tight oil and gas reservoirs such as shale pays presents a huge challenge to the petroleum industry due to the naturally low permeability of shale formations and thus low productivity of oil and gas wells.Shale formations are also vulnerable to the contamination of the water in the drilling and completion fluids,which further reduces reservoir permeability.Although gas-drilling(drilling with gas)has been used to address the issue,several problems such as formation water influx,wellbore collapse,excessive gas volume requirement and hole cleaning in horizontal drilling,still hinder its application.A new technique called gas-lift drilling has recently been proposed to solve these problems,but the optimal design of drilling operation requires a thorough investigation of fluid flow field below the asymmetric drill bits for evaluating the fluid power needed to clean the bottom hole.Such an investigation is conducted in this work based on the Finite Element Method(FEM)implemented in an open source computational framework,FEniCS.Pressure and flow velocity fields were computed for three designs of drill bit face characterized by radial bit blades and one eccentric orifice of discharge.One of the designs is found superior over the other two because it generates relatively uniform flow velocities between blades and provides a balanced fluid power needed to clean all the bit teeth on each bit blade.To quantify the capability of borehole cleanup presented by three drill bit designs,the energy per unit volume is calculated in each region of drill bit and compared with the required value suggested by the literature.In addition,the developed FEM model under FEniCS framework provides engineers an accurate tool for optimizing drill bit design for efficiently gas-lift drilling unconventional tight oil and gas reservoirs. 展开更多
关键词 Gas-lift DRILLING reverse CIRCULATION UNCONVENTIONAL RESERVOIRS bit design.
下载PDF
A review of interaction mechanisms and microscopic simulation methods for CO_(2)-water-rock system
8
作者 ZHANG Liehui ZHANG Tao +6 位作者 ZHAO Yulong HU Haoran WEN Shaomu WU Jianfa CAO Cheng WANG Yongchao FAN Yunting 《Petroleum Exploration and Development》 SCIE 2024年第1期223-238,共16页
This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscop... This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems. 展开更多
关键词 CO_(2)-water-rock DISSOLUTION PRECIPITATION precipitate migration microscopic simulation CO_(2)capture utilization and storage carbon neutrality decouple
下载PDF
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances
9
作者 ZHOU Li WANG Guo-rong WAN Min 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期271-284,共14页
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control... An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller. 展开更多
关键词 adaptive backstepping control disturbance observer flexible marine riser input dead zone vibration control
下载PDF
Optimization method of refracturing timing for old shale gas wells
10
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs
11
作者 Dan ZHANG Liangping YI +4 位作者 Zhaozhong YANG Jingqiang ZHANG Gang CHEN Ruoyu YANG Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期911-930,共20页
A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the dr... A novel phase-field model for the propagation of mixed-mode hydraulic fractures,characterized by the formation of mixed-mode fractures due to the interactions between fluids and solids,is proposed.In this model,the driving force for the phase field consists of both tensile and shear components,with the fluid contribution primarily manifesting in the tension driving force.The displacement and pressure are solved simultaneously by an implicit method.The numerical solution's iterative format is established by the finite element discretization and Newton-Raphson(NR)iterative methods.The correctness of the model is verified through the uniaxial compression physical experiments on fluid-pressurized rocks,and the limitations of the hydraulic fracture expansion phase-field model,which only considers mode I fractures,are revealed.In addition,the influence of matrix mode II fracture toughness value,natural fracture mode II toughness value,and fracturing fluid injection rate on the hydraulic fracture propagation in porous media with natural fractures is studied. 展开更多
关键词 mixed-mode crack hydraulic fracturing poro-elasticity phase-field method(PFM)
下载PDF
Fracture sealing performance of granular lost circulation materials at elevated temperature:A theoretical and coupled CFD-DEM simulation study
12
作者 Chong Lin Qi-Cong Xu +4 位作者 Lie-Xiang Han Gao Li Hai He Hong-Ling Zhou Ji-Ping She 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期567-581,共15页
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio... Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones. 展开更多
关键词 Geothermal well drilling HTHP formationLost circulation material CFD-DEM Fracture sealing
下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:3
13
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience Carbon reduction technologies Carbon neutrality Energy transition Underground energy storage Carbon capture utilization and storage(CCUS)
下载PDF
Characteristics of geological structures in Shiling and Zhuanshanhu areas of Yehe Uplift,NE China
14
作者 GUAN Yue YU Yinghua +1 位作者 ZHANG Yaxiong YUAN Hongqi 《Global Geology》 2024年第2期105-120,共16页
The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a com... The basin marginal fault system is the key to understand the formation and evolution of Songliao Basin.In order to investigate the influence of marginal fault system on the structural evolution of Songliao Basin,a comprehensive study was conducted on Shiling Town and Zhuanshanhu area of Yehe Town in Siping City of Jilin Province,where is the southeastern margin of the Songliao Basin and there are a series of well-exposed fault,fold and intrusive bodies belonging to the main marginal fault system of the Songliao Basin known as the Jiamusi-Yitong(Jia-Yi)fault zone.Through profile measurement and field investigation,samples with various lithologies and distinctive features were collected.Detailed field and laboratory works include component and microstructure analysis of these samples,rock-rock contact analysis,main strike measurement and statistics analysis.These data reveal the structural characteristics of the fold,fault and intrusive bodies in the study area.The research results show that the folds are distributed in the Mesozoic strata near the main fault of the eastern branch of the Jia-Yi fault zone,and the folded strata involve the Cretaceous Denglouku and Quantou formations.In addition,the section is dominated by high-angle strikeslip thrust faults.Light-colored veins and dark-colored veins are extensively distributed in the exposed granites.Statistical analysis of joint and fault attitudes in the study area reveals a right-lateral strike-sliping along the main fault.The large-scale right-lateral strike-slip and thrust fault system in Shiling Town occurred in right-lateral transpressive stage in Late Cretaceous.Based on the results above,tectonic evolution sequence in Shiling section of the Jia-Yi fault zone during the Mesozoic can be divided into five stages:Middle Jurassic left-lateral ductile strike-slip stage,Late Jurassic compression stage,Early Cretaceous tension stage,Early Cretaceous extension stage and Late Cretaceous right-lateral transpressive stage.These may have important constraint on understanding the Mesozoic evolution of the Songliao Basin. 展开更多
关键词 Jia-Yi fault structural characteristics evolution sequence Shiling Zhuanshanhu northern segment Tanlu fault
下载PDF
Enrichment conditions and distribution characteristics of lacustrine medium-to-high maturity shale oil in China
15
作者 ZHAO Wenzhi ZHU Rukai +2 位作者 LIU Wei BIAN Congsheng WANG Kun 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期242-259,共18页
Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed t... Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin. 展开更多
关键词 medium-to-high maturity shale oil sweet-spot zone enrichment conditions distributional characteristics assessment standard onshore China
下载PDF
Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs:A case study from the Triassic Yanchang Formation,Ordos Basin
16
作者 Yu-Bin Yang Wen-Lian Xiao +8 位作者 Ling-Li Zheng Qi-Hong Lei Chao-Zhong Qin You-An He Shuai-Shuai Liu Min Li Yong-Ming Li Jin-Zhou Zhao Meng Chen 《Petroleum Science》 SCIE EI CSCD 2023年第5期2892-2907,共16页
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte... The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone. 展开更多
关键词 Tight sandstone Pore size distribution(PSD) Throat size distribution(TSD) Pore and throat heterogeneity Gas-phase flow capacity Nuclear magnetic resonance(NMR) Constant-rate mercury injection(CRMI)
下载PDF
Investigation of feasibility of alkali-cosolvent flooding in heavy oil reservoirs
17
作者 Yi-Bo Li He-Fei Jia +3 位作者 Wan-Fen Pu Bing Wei Shuo-Shi Wang Na Yuan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1608-1619,共12页
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ... Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding. 展开更多
关键词 Heavy oil MICROEMULSION Cold production Chemical flooding Displacement efficiency
下载PDF
Prediction of the viscosity of natural gas at high temperature and high pressure using free-volume theory and entropy scaling
18
作者 Wei Xiong Lie-Hui Zhang +5 位作者 Yu-Long Zhao Qiu-Yun Hu Ye Tian Xiao He Rui-Han Zhang Tao Zhang 《Petroleum Science》 SCIE EI CSCD 2023年第5期3210-3222,共13页
Eighteen models based on two equations of state(EoS),three viscosity models,and four mixing rules were constructed to predict the viscosities of natural gases at high temperature and high pressure(HTHP)conditions.For ... Eighteen models based on two equations of state(EoS),three viscosity models,and four mixing rules were constructed to predict the viscosities of natural gases at high temperature and high pressure(HTHP)conditions.For pure substances,the parameters of free volume(FV)and entropy scaling(ES)models were found to scale with molecular weight,which indicates that the ordered behavior of parameters of Peng-Robinson(PR)and Perturbed-Chain Statistical Associating Fluid Theory(PC-SAFT)propagates to the behavior of parameters of viscosity model.Predicting the viscosities of natural gases showed that the FV and ES models respectively combined with MIX4 and MIX2 mixing rules produced the best accuracy.Moreover,the FV models were more accurate for predicting the viscosities of natural gases than ES models at HTHP conditions,while the ES models were superior to PRFT models.The average absolute relative deviations of the best accurate three models,i.e.,PC-SAFT-FV-MIX4,tPR-FVMIX4,and PC-SAFT-ES-MIX2,were 5.66%,6.27%,and 6.50%,respectively,which was available for industrial production.Compared with the existing industrial models(corresponding states theory and LBC),the proposed three models were more accurate for modeling the viscosity of natural gas,including gas condensate. 展开更多
关键词 VISCOSITY Friction theory Free volume theory Entropy scaling PC-SAFT Equation of state
下载PDF
Control of strike-slip faults on Sinian carbonate reservoirs in Anyue gas field, Sichuan Basin, SW China
19
作者 HE Xiao TANG Qingsong +5 位作者 WU Guanghui LI Fei TIAN Weizhen LUO Wenjun MA Bingshan SU Chen 《Petroleum Exploration and Development》 SCIE 2023年第6期1282-1294,共13页
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn... The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs. 展开更多
关键词 pre-Cambrian strike-slip fault carbonate reservoir FRACTURING controlling factor Sichuan Basin
下载PDF
Effects of cosolvents on CO_(2) displacement of shale oil and carbon storage
20
作者 ZHANG Yifan WANG Lu +5 位作者 ZOU Rui ZOU Run MENG Zhan HUANG Liang LIU Yisheng LEI Hao 《Petroleum Exploration and Development》 SCIE 2023年第6期1509-1518,共10页
Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent d... Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent. 展开更多
关键词 molecular dynamics shale oil NANOPORE carbon dioxide COSOLVENT displacement efficiency storage effect
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部