Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and eva...Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.展开更多
In recent years,statistics have indicated that the number of patients with malignant brain tumors has increased sharply.However,most surgeons still perform surgical training using the traditional autopsy and prosthesi...In recent years,statistics have indicated that the number of patients with malignant brain tumors has increased sharply.However,most surgeons still perform surgical training using the traditional autopsy and prosthesis model,which encounters many problems,such as insufficient corpse resources,low efficiency,and high cost.With the advent of the 5G era,a wide range of Industrial Internet of Things(IIOT)applications have been developed.Virtual Reality(VR)and Augmented Reality(AR)technologies that emerged with 5G are developing rapidly for intelligent medical training.To address the challenges encountered during neurosurgery training,and combining with cloud computing,in this paper,a highly immersive AR-based brain tumor neurosurgery remote collaborative virtual surgery training system is developed,in which a VR simulator is embedded.The system enables real-time remote surgery training interaction through 5G transmission.Six experts and 18 novices were invited to participate in the experiment to verify the system.Subsequently,the two simulators were evaluated using face and construction validation methods.The results obtained by training the novices 50 times were further analyzed using the Learning Curve-Cumulative Sum(LC-CUSUM)evaluation method to validate the effectiveness of the two simulators.The results of the face and content validation demonstrated that the AR simulator in the system was superior to the VR simulator in terms of vision and scene authenticity,and had a better effect on the improvement of surgical skills.Moreover,the surgical training scheme proposed in this paper is effective,and the remote collaborative training effect of the system is ideal.展开更多
The U(1)symmetry of the X X Z central spin model with an arbitrary central magnetic field B is broken,since its total spin in the z-direction is not conserved.We obtain the exact solutions of the system by using the o...The U(1)symmetry of the X X Z central spin model with an arbitrary central magnetic field B is broken,since its total spin in the z-direction is not conserved.We obtain the exact solutions of the system by using the off-diagonal Bethe ansatz method.The thermodynamic limit is investigated based on the solutions.We find that the contribution of the inhomogeneous term in the associated T-Q relation to the ground state energy satisfies an N^(-1)scaling law,where N is the total number of spins.This result makes it possible to investigate the properties of the system in the thermodynamic limit.By assuming the structural form of the Bethe roots in the thermodynamic limit,we obtain the contribution of the direction of B to the ground state energy.It is shown that the contribution of the direction of the central magnetic field is a finite value in the thermodynamic limit.This is the phenomenon caused by the U(1)symmetry breaking of the system.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge...We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge, and is realized by making use of the hydrofluoric acid's corrosive properties. The fibre corrosion can be accurately controlled, thus opening us the gate for the design and fabrication of new PB. GFs with more complex and more efficient cladding structures. Numerical results and actual simulations indicate that PBGFs built with this cladding structure have improved b^dgap properties and guiding bands as wide as 500 nm have been theoretically reached. Using the same method, we have also been able to design two other types of PBGFs with improved cladding structure.展开更多
In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform ...In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.展开更多
The simple approach to acquire the fltaxescenee spectra of vitamin bl, b2 and t6 is proposed by direct ilhanination on solid powder sample. The experimentally acquired fluorescence spectra are in accordance with the p...The simple approach to acquire the fltaxescenee spectra of vitamin bl, b2 and t6 is proposed by direct ilhanination on solid powder sample. The experimentally acquired fluorescence spectra are in accordance with the previous measurements on soluble samples. The fluorescence spectra for a mixture of vitamins bl, b2 and b6 with different concentrations have been investigated, and the fluorescence mechanism is explained on the basis of moleoalar struchture Possible reasons of the blue-shift of the fluorescence peak and enhancement of the peak power are explained as well. The advantages of solid powder method is analyzed and discussed.展开更多
Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3 dB fibre loop mirrors and one fibre Bragg grating (FBG) has been experimentally demons...Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3 dB fibre loop mirrors and one fibre Bragg grating (FBG) has been experimentally demonstrated. The FBG with 4.5% reflectivity is replaced at the cleaved facet with 4% Fresnel reflection. A high coherent combining efficiency of 93.5% is obtained when the FBG with central wavelength at 1559.845nm is introduced into the cavity, while it is only 90.1% combining efficiency with the FBG at central wavelength 1557.830 nm. In comparison with other reports, the proposed compound-cavity laser has the advantage of needless tuning FBG to obtain the coherent condition, and it is facile to ascertain the seemly wavelength lasing for a Michelson compound cavity.展开更多
A novel all-fibre flat-top comb filter based on a high birefringence photonic crystal fibre loop mirror is proposed and demonstrated. We simulate theoretically its output spectra and experimentally realize a flat-top ...A novel all-fibre flat-top comb filter based on a high birefringence photonic crystal fibre loop mirror is proposed and demonstrated. We simulate theoretically its output spectra and experimentally realize a flat-top output with a high extinction ratio. Compared to filters consisting of the conventional Panda polarization maintaining fibre, filters based on a high birefringence photonic crystal fibre loop mirror have better temperature stability. This kind of filter can be expected to be used widely in Wavelength-division-multiplexing(WDM) systems in the future.展开更多
Hollow core's inner surface coating in a photonic bandgap fibre (PBCF) is investigated by means of finite element method. The coat material and thickness-dependence dispersion curve and group velocity dispersion ar...Hollow core's inner surface coating in a photonic bandgap fibre (PBCF) is investigated by means of finite element method. The coat material and thickness-dependence dispersion curve and group velocity dispersion are numerically studied. The coating with materials of low index or small thickness will rise up the dispersion curve but will not induce surface modes. However, coating with materials of high index or big coat thickness will induce surface modes and avoided-crossings. By varying coat material's refractive index and thickness, the appearances of surface modes and avoided-crossings can be changed. It is found that the avoided-crossing can enormously enlarge the negative dispersion which can find applications in dispersion compensation. We numerically achieve a negative dispersion as large as -21416.15ps/nm/km. The results give a physical insight into the propagation properties of PBGFs with the hollow core coated by a layer of material and are of crucial significance in the applications of PBGF coating.展开更多
The optical-induced dielectric tunability properties of DAST crystal in THz range were experimentally demonstrated.The DAST crystal was grown by the spontaneous nucleation method(SNM) and characterized by infrared spe...The optical-induced dielectric tunability properties of DAST crystal in THz range were experimentally demonstrated.The DAST crystal was grown by the spontaneous nucleation method(SNM) and characterized by infrared spectrum. With the optimum wavelength of the exciting optical field, the transmission spectra of the DAST crystal excited by 532 nm laser under different power were measured by terahertz time-domain spectroscopy(THz-TDS) at room temperature. The transmitted THz intensity reduction of 26 % was obtained at 0.68 THz when the optical field was up to 80 m W. Meanwhile,the variation of refractive index showed an approximate quadratic behavior with the exciting optical field, which was related to the internal space charge field of photorefractive phenomenon in the DAST crystal caused by the photogenerated carrier.A significant enhancement of 13.7 % for THz absorption coefficient occurred at 0.68 THz due to the photogenerated carrier absorption effect in the DAST crystal.展开更多
An actively enhanced resonant transmission in a plasmonic array of subwavelength holes is demonstrated by use of terahertz time-domain spectroscopy. By connecting this two-dimensional element into an electrical circui...An actively enhanced resonant transmission in a plasmonic array of subwavelength holes is demonstrated by use of terahertz time-domain spectroscopy. By connecting this two-dimensional element into an electrical circuit, tunable resonance enhancement is observed in arrays made from good and relatively poor metals. The tunable feature is attributed to the nonlinear electric response of the periodic hole array film, which is confirmed by its voltage-current behavior. This finding could lead to a unique route to active plasmonic devices, such as tunable filters, spatial modulators, and integrated terahertz optoelectronic components.展开更多
In this study, we propose and demonstrate a broadband polarization-independent terahertz modulator based on graphene/silicon hybrid structure through a combination of continuous wave optical illumination and electrica...In this study, we propose and demonstrate a broadband polarization-independent terahertz modulator based on graphene/silicon hybrid structure through a combination of continuous wave optical illumination and electrical gating.Under a pump power of 400 mW and the voltages ranging from-1.8 V to 1.4 V, modulation depths in a range of-23%–62% are achieved in a frequency range from 0.25 THz to 0.65 THz. The modulator is also found to have a transition from unidirectional modulation to bidirectional modulation with the increase of pump power. Combining the Raman spectra and Schottky current–voltage characteristics of the device, it is found that the large amplitude modulation is ascribed to the electric-field controlled carrier concentration in silicon with assistance of the graphene electrode and Schottky junction.展开更多
A temperature tunable photonie bandgap fiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber are experimentally a...A temperature tunable photonie bandgap fiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber are experimentally and numerically investigated. Compression of transmission bandwidth of the PBGF is demonstrated by changing the temperature of part of the fiber. The tunable transmission bandwidth with a range of 250nm is achieved by changing the temperature from 30℃ to 90℃.展开更多
The oxygen evolution reaction(OER)electrocatalysts,which can keep active for a long time in acidic media,are of great significance to proton exchange membrane water electrolyzers.Here,Ru-Co_(3)O_(4)electrocatalysts wi...The oxygen evolution reaction(OER)electrocatalysts,which can keep active for a long time in acidic media,are of great significance to proton exchange membrane water electrolyzers.Here,Ru-Co_(3)O_(4)electrocatalysts with transition metal oxide Co_(3)O_(4)as matrix and the noble metal Ru as doping element have been prepared through an ion exchange–pyrolysis process mediated by metal-organic framework,in which Ru atoms occupy the octahedral sites of Co_(3)O_(4).Experimental and theoretical studies show that introduced Ru atoms have a passivation effect on lattice oxygen.The strong coupling between Ru and O causes a negative shift in the energy position of the O p-band centers.Therefore,the bonding activity of oxygen in the adsorbed state to the lattice oxygen is greatly passivated during the OER process,thus improving the stability of matrix material.In addition,benefiting from the modulating effect of the introduced Ru atoms on the metal active sites,the thermodynamic and kinetic barriers have been significantly reduced,which greatly enhances both the catalytic stability and reaction efficiency of Co_(3)O_(4).展开更多
Developing highly robust and efficient electrode materials is of critical importance to promoting the energy density of current supercapacitors for commercialization.Herein,we report an efficient catalyst with monodis...Developing highly robust and efficient electrode materials is of critical importance to promoting the energy density of current supercapacitors for commercialization.Herein,we report an efficient catalyst with monodispersed Mn single-atoms embedded in carbon nanotubes(Mn-CNTs)for enhancing the electrode performance of supercapacitors.A high specific capacitance(1523.6 F·g^(-1) at 1.0 A·g^(-1))can be achieved,which is about twice as high as the specific capacitance of the electrode material without the introduction of Mn single-atoms.Remarkably,the asymmetric electrochemical capacitor created with Mn-CNT and activated carbon exhibits a high energy density of 180.8 Wh·kg^(-1) at a power density of 1.4 kW·kg^(-1),much higher than most reported results.The study shows that the integration of Mn atoms into the CNT can enhance the charge transport capacity and the number of polar active sites of Mn-CNT and then facilitate chemical interactions between Mn-CNT and OH-.This work provides a novel strategy to enable high-energy storage in supercapacitors by introducing single-atoms into carbon nanotubes to improve electrodes’energy density and cycle life.展开更多
Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including op...Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including optical sensing,spectroscopy,and nonlinear optics.However,mid-IR silicon PICs typically show moderate performance compared to state-of-the-art silicon photonic devices operating in the telecommunication band.Here,we proposed and demonstrated suspended nanomembrane silicon(SNS)PICs with light-guiding within deep-subwavelength waveguide thickness for operation in the short-wavelength mid-IR region.We demonstrated key building components,namely,grating couplers,waveguide arrays,micro-resonators,etc.,which exhibit excellent performances in bandwidths,back reflections,quality factors,and fabrication tolerance.Moreover,the results show that the proposed SNS PICs have high compatibility with the multi-project wafer foundry services.Our study provides an unprecedented platform for mid-IR integrated photonics and applications.展开更多
Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling o...Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling of Au nanoparticles and defective CuO to form metal-support interactions(MSI)and oxygen vacancies(OVs).The introduction of Au forms a new CO adsorption site,which successfully solves the competitive adsorption problem of CO with H2O and O_(2).Due to the coupling of MSI and OVs,the reduced ability of catalyst and the activation and migration ability of oxygen are enhanced simultaneously.Au-CuO has the ability to oxidize CO at room temperature with high stability under a humid environment.Theoretical calculation confirmed the competitive adsorption and the influence of MSI and OVs coupling on the catalyst performance.The mechanism of water resistance in CO catalytic oxidation was also explained.展开更多
976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level...976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level(^(4 )F_(9/2)→^(4)F_(7/2))depletes the Er ions population inversion,reducing the pump quantum efciency and limiting the power scaling.In this work,we demonstrate that the pump quantum efciency can be efectively improved by using a long-wavelength pump with lower excited state absorption rate.A 3.5μm Er-doped ZBLAN fber laser was built and its performances at diferent pump wavelengths were experimentally investigated in detail.A maximum output power at 3.46μm of~7.2 W with slope efciency(with respect to absorbed 1990 nm pump power)of 41.2%was obtained with an optimized pump wavelength of 1990 nm,and the pump quantum efciency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme.Further power scaling was only limited by the available 1990 nm pump power.A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical ftting of experimental results.The potential of further power scaling was also discussed,based on the developed model.展开更多
The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold,wide transparent range,etc.In this paper,optica...The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold,wide transparent range,etc.In this paper,optical rectification(OR)with tilted-pulse-front(TPF)setting based on the 4H-SiC crystal is proposed.The theory accounts for the optimization of incident pulse pre-chirping in the TPF OR process under high-intensity femtosecond laser pumping.Compared with the currently recognized LiNbO3-based TPF OR,which generates a single-cycle terahertz pulse within 3 THz,4HSiC demonstrates a significant advantage in producing ultra-widely tunable(up to over 14 THz,TPF angle 31◦–38◦)terahertz waves with high efficiency(~10–2)and strong field(~MV/cm).Besides,the spectrum characteristics,as well as the evolution from single-to multi-cycle terahertz pulses can be modulated flexibly by pre-chirping.The simulation results show that 4H-SiC enables terahertz frequency extending to an unprecedent range by OR,which has extremely important potential in strong-field terahertz applications.展开更多
基金Supported by the Yunnan Key Laboratory of Opto-Electronic Information Technology,Postgraduate Research Innovation Fund of Yunnan Normal University (YJSJJ22-B79)the National Natural Science Foundation of China (62062069,62062070,62005235)。
文摘Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.
基金supported by the Yunnan Key Laboratory of Optoelectronic Information Technology,and grant funded by the National Natural Science Foundation of China(62062069,62062070,and 62005235)Taif University Researchers Supporting Project(TURSP-2020/126)Taif University,Taif,Saudi Arabia.Jun Liu and Kai Qian contributed equally to this paper。
文摘In recent years,statistics have indicated that the number of patients with malignant brain tumors has increased sharply.However,most surgeons still perform surgical training using the traditional autopsy and prosthesis model,which encounters many problems,such as insufficient corpse resources,low efficiency,and high cost.With the advent of the 5G era,a wide range of Industrial Internet of Things(IIOT)applications have been developed.Virtual Reality(VR)and Augmented Reality(AR)technologies that emerged with 5G are developing rapidly for intelligent medical training.To address the challenges encountered during neurosurgery training,and combining with cloud computing,in this paper,a highly immersive AR-based brain tumor neurosurgery remote collaborative virtual surgery training system is developed,in which a VR simulator is embedded.The system enables real-time remote surgery training interaction through 5G transmission.Six experts and 18 novices were invited to participate in the experiment to verify the system.Subsequently,the two simulators were evaluated using face and construction validation methods.The results obtained by training the novices 50 times were further analyzed using the Learning Curve-Cumulative Sum(LC-CUSUM)evaluation method to validate the effectiveness of the two simulators.The results of the face and content validation demonstrated that the AR simulator in the system was superior to the VR simulator in terms of vision and scene authenticity,and had a better effect on the improvement of surgical skills.Moreover,the surgical training scheme proposed in this paper is effective,and the remote collaborative training effect of the system is ideal.
基金the National Natural Science Foundation of China(Grant Nos.11847245,11874393,and 12134015)the Doctoral Scientific Research Foundation of Yunnan Normal University(Grant No.00900205020503180)+2 种基金the National Natural Science Foundation of China(Grant Nos.12275214,11805152,12047502,and 11947301)the Natural Science Basic Research Program of Shaanxi Province(Grant Nos.2021JCW-19and 2019JQ-107)the Shaanxi Key Laboratory for Theoretical Physics Frontiers in China。
文摘The U(1)symmetry of the X X Z central spin model with an arbitrary central magnetic field B is broken,since its total spin in the z-direction is not conserved.We obtain the exact solutions of the system by using the off-diagonal Bethe ansatz method.The thermodynamic limit is investigated based on the solutions.We find that the contribution of the inhomogeneous term in the associated T-Q relation to the ground state energy satisfies an N^(-1)scaling law,where N is the total number of spins.This result makes it possible to investigate the properties of the system in the thermodynamic limit.By assuming the structural form of the Bethe roots in the thermodynamic limit,we obtain the contribution of the direction of B to the ground state energy.It is shown that the contribution of the direction of the central magnetic field is a finite value in the thermodynamic limit.This is the phenomenon caused by the U(1)symmetry breaking of the system.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
基金Supported in part by the National Natural Science Foundation under Grant Nos 60577018, 10674075, 10774077, 10674074, the National Key Basic Research Programme of China under Grant No 2003CB314906, China Postdoctoral Science Foundation under Grant No 20060400687, the Science and Technology Innovation Foundation of Nankai University and the Opening Project (2005-06) of Key Laboratory of Opto-electronic Information Science and Technology (Ministry of Education) Nankai University and Tianjin University.
文摘We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge, and is realized by making use of the hydrofluoric acid's corrosive properties. The fibre corrosion can be accurately controlled, thus opening us the gate for the design and fabrication of new PB. GFs with more complex and more efficient cladding structures. Numerical results and actual simulations indicate that PBGFs built with this cladding structure have improved b^dgap properties and guiding bands as wide as 500 nm have been theoretically reached. Using the same method, we have also been able to design two other types of PBGFs with improved cladding structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774130 11474248,61176127,61006085,61274013,and 61306013the Key Program for International Science and Technology Cooperation Projects of China(Grant No.2011DFA62380)the Ph.D. Programs Foundation of the Ministry of Education of China(Grant No.20105303120002)
文摘In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.
基金supported by the Tianjin Natural Science Foundation(No.06YFJZJC00300)the Natural Science Foundation of China(Nos.10674075,10774077,10674074,50802044 and 60736039)
文摘The simple approach to acquire the fltaxescenee spectra of vitamin bl, b2 and t6 is proposed by direct ilhanination on solid powder sample. The experimentally acquired fluorescence spectra are in accordance with the previous measurements on soluble samples. The fluorescence spectra for a mixture of vitamins bl, b2 and b6 with different concentrations have been investigated, and the fluorescence mechanism is explained on the basis of moleoalar struchture Possible reasons of the blue-shift of the fluorescence peak and enhancement of the peak power are explained as well. The advantages of solid powder method is analyzed and discussed.
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2003CB314906, and the Tianjin Natural Science Foundation under Grant No 06YFJZJC00300.
文摘Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3 dB fibre loop mirrors and one fibre Bragg grating (FBG) has been experimentally demonstrated. The FBG with 4.5% reflectivity is replaced at the cleaved facet with 4% Fresnel reflection. A high coherent combining efficiency of 93.5% is obtained when the FBG with central wavelength at 1559.845nm is introduced into the cavity, while it is only 90.1% combining efficiency with the FBG at central wavelength 1557.830 nm. In comparison with other reports, the proposed compound-cavity laser has the advantage of needless tuning FBG to obtain the coherent condition, and it is facile to ascertain the seemly wavelength lasing for a Michelson compound cavity.
基金supported by the"100 Projects"of Creative Research for the Undergraduates of Nankai University under Grant(BX6-224)
文摘A novel all-fibre flat-top comb filter based on a high birefringence photonic crystal fibre loop mirror is proposed and demonstrated. We simulate theoretically its output spectra and experimentally realize a flat-top output with a high extinction ratio. Compared to filters consisting of the conventional Panda polarization maintaining fibre, filters based on a high birefringence photonic crystal fibre loop mirror have better temperature stability. This kind of filter can be expected to be used widely in Wavelength-division-multiplexing(WDM) systems in the future.
基金Supported by the National Key Basic Research Programme of China under Grant No 2003CB314906, the National Natural Science Foundation of China under Grant No 10674074, and the Tianjin Natural Science Foundation under Grant No 06YFJZJC00300.
文摘Hollow core's inner surface coating in a photonic bandgap fibre (PBCF) is investigated by means of finite element method. The coat material and thickness-dependence dispersion curve and group velocity dispersion are numerically studied. The coating with materials of low index or small thickness will rise up the dispersion curve but will not induce surface modes. However, coating with materials of high index or big coat thickness will induce surface modes and avoided-crossings. By varying coat material's refractive index and thickness, the appearances of surface modes and avoided-crossings can be changed. It is found that the avoided-crossing can enormously enlarge the negative dispersion which can find applications in dispersion compensation. We numerically achieve a negative dispersion as large as -21416.15ps/nm/km. The results give a physical insight into the propagation properties of PBGFs with the hollow core coated by a layer of material and are of crucial significance in the applications of PBGF coating.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB755403)the National Natural Science Foundation of China(Grant Nos.61775160,61771332,61705162,51472251,and U1837202)
文摘The optical-induced dielectric tunability properties of DAST crystal in THz range were experimentally demonstrated.The DAST crystal was grown by the spontaneous nucleation method(SNM) and characterized by infrared spectrum. With the optimum wavelength of the exciting optical field, the transmission spectra of the DAST crystal excited by 532 nm laser under different power were measured by terahertz time-domain spectroscopy(THz-TDS) at room temperature. The transmitted THz intensity reduction of 26 % was obtained at 0.68 THz when the optical field was up to 80 m W. Meanwhile,the variation of refractive index showed an approximate quadratic behavior with the exciting optical field, which was related to the internal space charge field of photorefractive phenomenon in the DAST crystal caused by the photogenerated carrier.A significant enhancement of 13.7 % for THz absorption coefficient occurred at 0.68 THz due to the photogenerated carrier absorption effect in the DAST crystal.
基金supported by the National Natural Science Foundation of China(Grant No.61007034)
文摘An actively enhanced resonant transmission in a plasmonic array of subwavelength holes is demonstrated by use of terahertz time-domain spectroscopy. By connecting this two-dimensional element into an electrical circuit, tunable resonance enhancement is observed in arrays made from good and relatively poor metals. The tunable feature is attributed to the nonlinear electric response of the periodic hole array film, which is confirmed by its voltage-current behavior. This finding could lead to a unique route to active plasmonic devices, such as tunable filters, spatial modulators, and integrated terahertz optoelectronic components.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61565004), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos, 2013GXNSFDAO19002 and 2014GXNSFGA118003), the Guangxi Scientific Research and Technology Development Program, China (Grant No. 1598017-1), the Guilin Scientific Research and Technology Development Program, China (Grant Nos. 20140127-1 and 20150133-3), and the Special Funds for Distinguished Experts of Guangxi Zhuang Autonomous Region, China.
文摘In this study, we propose and demonstrate a broadband polarization-independent terahertz modulator based on graphene/silicon hybrid structure through a combination of continuous wave optical illumination and electrical gating.Under a pump power of 400 mW and the voltages ranging from-1.8 V to 1.4 V, modulation depths in a range of-23%–62% are achieved in a frequency range from 0.25 THz to 0.65 THz. The modulator is also found to have a transition from unidirectional modulation to bidirectional modulation with the increase of pump power. Combining the Raman spectra and Schottky current–voltage characteristics of the device, it is found that the large amplitude modulation is ascribed to the electric-field controlled carrier concentration in silicon with assistance of the graphene electrode and Schottky junction.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774077, 10674074, 50802044 and 60736039.
文摘A temperature tunable photonie bandgap fiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber are experimentally and numerically investigated. Compression of transmission bandwidth of the PBGF is demonstrated by changing the temperature of part of the fiber. The tunable transmission bandwidth with a range of 250nm is achieved by changing the temperature from 30℃ to 90℃.
基金the National Natural Science Foundation of China(Nos.12025503,U23B2072,and 12105208)。
文摘The oxygen evolution reaction(OER)electrocatalysts,which can keep active for a long time in acidic media,are of great significance to proton exchange membrane water electrolyzers.Here,Ru-Co_(3)O_(4)electrocatalysts with transition metal oxide Co_(3)O_(4)as matrix and the noble metal Ru as doping element have been prepared through an ion exchange–pyrolysis process mediated by metal-organic framework,in which Ru atoms occupy the octahedral sites of Co_(3)O_(4).Experimental and theoretical studies show that introduced Ru atoms have a passivation effect on lattice oxygen.The strong coupling between Ru and O causes a negative shift in the energy position of the O p-band centers.Therefore,the bonding activity of oxygen in the adsorbed state to the lattice oxygen is greatly passivated during the OER process,thus improving the stability of matrix material.In addition,benefiting from the modulating effect of the introduced Ru atoms on the metal active sites,the thermodynamic and kinetic barriers have been significantly reduced,which greatly enhances both the catalytic stability and reaction efficiency of Co_(3)O_(4).
基金supported by the Yunnan provincial education department scientific research fund project(No.2022J0815)Special Youth Project for Fundamental Research in Yunnan Province(No.202301AU070227)+3 种基金the National Natural Science Foundation of China(No.12264056)Yunnan Expert Workstation(No.202205AF150008)support from the International Joint Research Center for Intelligent Nano Environmental Protection New Materials and Testing Technology(No.SDGH2108)the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Developing highly robust and efficient electrode materials is of critical importance to promoting the energy density of current supercapacitors for commercialization.Herein,we report an efficient catalyst with monodispersed Mn single-atoms embedded in carbon nanotubes(Mn-CNTs)for enhancing the electrode performance of supercapacitors.A high specific capacitance(1523.6 F·g^(-1) at 1.0 A·g^(-1))can be achieved,which is about twice as high as the specific capacitance of the electrode material without the introduction of Mn single-atoms.Remarkably,the asymmetric electrochemical capacitor created with Mn-CNT and activated carbon exhibits a high energy density of 180.8 Wh·kg^(-1) at a power density of 1.4 kW·kg^(-1),much higher than most reported results.The study shows that the integration of Mn atoms into the CNT can enhance the charge transport capacity and the number of polar active sites of Mn-CNT and then facilitate chemical interactions between Mn-CNT and OH-.This work provides a novel strategy to enable high-energy storage in supercapacitors by introducing single-atoms into carbon nanotubes to improve electrodes’energy density and cycle life.
基金partly supported by the National Natural Science Foundation of China(NSFC)(62175179,62161160335)Natural Science Foundation of Tianjin Municipality,China(23JCJQJC00250)+1 种基金Natural Science Foundation of Guangdong Province,China(2022B1515130002,2023A1515011189)Japan Society for the Promotion of Science(JSPS)(JP18K13798).
文摘Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including optical sensing,spectroscopy,and nonlinear optics.However,mid-IR silicon PICs typically show moderate performance compared to state-of-the-art silicon photonic devices operating in the telecommunication band.Here,we proposed and demonstrated suspended nanomembrane silicon(SNS)PICs with light-guiding within deep-subwavelength waveguide thickness for operation in the short-wavelength mid-IR region.We demonstrated key building components,namely,grating couplers,waveguide arrays,micro-resonators,etc.,which exhibit excellent performances in bandwidths,back reflections,quality factors,and fabrication tolerance.Moreover,the results show that the proposed SNS PICs have high compatibility with the multi-project wafer foundry services.Our study provides an unprecedented platform for mid-IR integrated photonics and applications.
基金supported by the National Natural Science Foundation of China(Grant nos.51772183 and 52072230).
文摘Water is considered to be an inhibitor of CO oxidation.The mechanism of retarding the reaction is thought to contribute to the practical application of CO oxidation,which is investigated by constructing the coupling of Au nanoparticles and defective CuO to form metal-support interactions(MSI)and oxygen vacancies(OVs).The introduction of Au forms a new CO adsorption site,which successfully solves the competitive adsorption problem of CO with H2O and O_(2).Due to the coupling of MSI and OVs,the reduced ability of catalyst and the activation and migration ability of oxygen are enhanced simultaneously.Au-CuO has the ability to oxidize CO at room temperature with high stability under a humid environment.Theoretical calculation confirmed the competitive adsorption and the influence of MSI and OVs coupling on the catalyst performance.The mechanism of water resistance in CO catalytic oxidation was also explained.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105240,62075159,61975146,and 62275190)Shandong Province Key R&D Program(Nos.2020CXGC010104 and 2021CXGC010202)Seed Foundation of Tianjin University(No.2023XPD-0020).
文摘976 nm+1976 nm dual-wavelength pumped Er-doped ZBLAN fiber lasers are generally accepted as the preferred solution for achieving 3.5μm lasing.However,the 2μm band excited state absorption from the upper lasing level(^(4 )F_(9/2)→^(4)F_(7/2))depletes the Er ions population inversion,reducing the pump quantum efciency and limiting the power scaling.In this work,we demonstrate that the pump quantum efciency can be efectively improved by using a long-wavelength pump with lower excited state absorption rate.A 3.5μm Er-doped ZBLAN fber laser was built and its performances at diferent pump wavelengths were experimentally investigated in detail.A maximum output power at 3.46μm of~7.2 W with slope efciency(with respect to absorbed 1990 nm pump power)of 41.2%was obtained with an optimized pump wavelength of 1990 nm,and the pump quantum efciency was increased to 0.957 compared with the 0.819 for the conventional 1976 nm pumping scheme.Further power scaling was only limited by the available 1990 nm pump power.A numerical simulation was implemented to evaluate the cross section of excited state absorption via a theoretical ftting of experimental results.The potential of further power scaling was also discussed,based on the developed model.
基金This work was supported by the National Natural Science Foundation of China(No.62175184)the Key Laboratory of Micro Opto-electro Mechanical System Technology,Ministry of Education.
文摘The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold,wide transparent range,etc.In this paper,optical rectification(OR)with tilted-pulse-front(TPF)setting based on the 4H-SiC crystal is proposed.The theory accounts for the optimization of incident pulse pre-chirping in the TPF OR process under high-intensity femtosecond laser pumping.Compared with the currently recognized LiNbO3-based TPF OR,which generates a single-cycle terahertz pulse within 3 THz,4HSiC demonstrates a significant advantage in producing ultra-widely tunable(up to over 14 THz,TPF angle 31◦–38◦)terahertz waves with high efficiency(~10–2)and strong field(~MV/cm).Besides,the spectrum characteristics,as well as the evolution from single-to multi-cycle terahertz pulses can be modulated flexibly by pre-chirping.The simulation results show that 4H-SiC enables terahertz frequency extending to an unprecedent range by OR,which has extremely important potential in strong-field terahertz applications.