We demonstrate a high-performance acousto-optic modulator-based bi-frequency interferometer,which can realize either beating or beating free interference for a single-photon level quantum state.Visibility and optical ...We demonstrate a high-performance acousto-optic modulator-based bi-frequency interferometer,which can realize either beating or beating free interference for a single-photon level quantum state.Visibility and optical efficiency of the interferometer are(99.5±0.2)%and(95±1)%,respectively.The phase of the interferometer is actively stabilized by using a dithering phase-locking scheme,where the phase dithering is realized by directly driving the acousto-optic modulators with a specially designed electronic signal.We further demonstrate applications of the interferometer in quantum technology,including bi-frequency coherent combination,frequency tuning,and optical switching.These results show the interferometer is a versatile device for multiple quantum technologies.展开更多
A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achi...A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.展开更多
Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the...Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices.展开更多
If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)ban...If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.展开更多
Experiments were performed on a high-speed online random neutron analyzing system (HORNA system) with a 252Cf neutron source (up to 1 GHz sampling rate and 3 input data channel),to obtain timeand frequency dependent s...Experiments were performed on a high-speed online random neutron analyzing system (HORNA system) with a 252Cf neutron source (up to 1 GHz sampling rate and 3 input data channel),to obtain timeand frequency dependent signatures which are sensitive to changes in the composition,fissile mass and configuration of the fissile assembly.The data were acquired by three high-speed synchronized acquisition cards at different detector angles,source-detector distances and block sizes.According to the relationship between 252Cf source and the ratio of power spectral density,Rpsd,all the signatures were calculated and analyzed using correlation and periodogram methods.Based on the results,the simulated autocorrelation functions were utilized for identifying different fissile mass with Elman neural network.The experimental results show that the Rpsd almost remains at constant amplitude in frequency range of 0-100 MHz,and is only related to the angle and source-detector distance.The trained Elman neural network is able to distinguish the characteristics of autocorrelation function and identify different fissile mass.The average identification rate reached 90% with high robustness.展开更多
In order to investigate their electrical characteristics, high-voltage light-emitting-diodes (HV-LEDs) each contain- ing four cells in series are fabricated. The electrical parameters including varying voltage and p...In order to investigate their electrical characteristics, high-voltage light-emitting-diodes (HV-LEDs) each contain- ing four cells in series are fabricated. The electrical parameters including varying voltage and parasitic effect are studied. It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6, 3.4, 4.7, and 6.4. IF increases linearly with the number of cells increasing. Moreover, the performance of the HV-LED with failure cells is examined, The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell. The series resistance of the failure cell is 76.8 Ω, while that of the normal cell is 21.3 Ω. The scanning electron microscope (SEM) image indicates that different metal layers do not contact well. It is hard to deposit the metal layers in the deep isolation trenches. The fabrication process of HV-LEDs needs to be optimized.展开更多
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a...An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.展开更多
A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused ...A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active regions, a slope efficiency as high as 1.49 W/A, a vertical divergence angle of 17.4~, and a threshold current density of 271 A/cm~ are achieved. By optimizing the structural parameters, the beam quMity is greatly improved, and the level of the COD power increases by more than two times compared with that of the conventional laser.展开更多
We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-...We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.展开更多
In recent years, the advances in terahertz applications have stimulated interest in the biological effects associated with this frequency range. We study the gene expression profile in three types of cells exposed to ...In recent years, the advances in terahertz applications have stimulated interest in the biological effects associated with this frequency range. We study the gene expression profile in three types of cells exposed to terahertz radiation,i.e., human ARPE-19 retinal pigment epithelial cells, simian virus 40-transformed human corneal epithelial cells, and human MIO-M1 Müller cells. We find that the gene expression in response to heat shock is unaffected, indicating that the minimum temperature increases under controlled environment. The transcriptome sequencing survey demonstrates that 6-hour irradiation with a broadband terahertz source results in specific change in gene expression and also the biological functions that are closely related to these genes. Our results imply that the effect of terahertz radiation on gene expression can last over 15 hours and depends on the type of cell.展开更多
The performance of the oxide-confined surface-relief(SR)structure vertical-cavity surface-emitting laser(VCSEL)is simulated and analyzed by using the three-dimensional finite-difference time-domain(FDTD)method.The imp...The performance of the oxide-confined surface-relief(SR)structure vertical-cavity surface-emitting laser(VCSEL)is simulated and analyzed by using the three-dimensional finite-difference time-domain(FDTD)method.The impacts of the device structure parameters on the far-field characteristics are researched.A single-fundamental-mode SR VCSEL with an oxide-aperture of 15μm is designed and produced.The single-mode power of the VCSEL is 5 mW,the threshold current is 2.5 mA,far-field divergent angles range from 7.8°to 10.8°and the side-mode suppression ratio is over 30 dB.The optical and electrical properties of the device are in agreement with the results of FDTD simulation,which shows that the SR technology can effectively suppress the higher-order-mode lasing,and make the SR VCSEL work in a single mode under a larger oxide aperture.展开更多
A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz ti...A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.展开更多
An ultrabroad and sharp transition bandpass flexible terahertz(THz)filter is designed using a multiple-layered metamaterial.This bandpass filter has excellent filtering capability,with a 3 dB bandwidth of about 0.47 T...An ultrabroad and sharp transition bandpass flexible terahertz(THz)filter is designed using a multiple-layered metamaterial.This bandpass filter has excellent filtering capability,with a 3 dB bandwidth of about 0.47 THz and sharp band-edge transitions of 80 dB/THz and 96 dB/THz,respectively,and it can be realized by a coupling individual resonance mode.We find that the geometry parameters have an influence on the transmission profile,which are capable of giving us meaningful guidance in design of high profile bandpass THz filters.The numerical results show that the multiple-layered flexible metamaterial provides an effective way to achieve ultrabroad THz devices.展开更多
A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of...A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.展开更多
Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zo...Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.展开更多
We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simpl...We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.展开更多
We demonstrate a low-loss terahertz waveguide based on the InAs-graphene-SiC structure. By analyzing the terahertz waveguide proposed in this paper, we can obtain that it is the characteristic of a low transmission lo...We demonstrate a low-loss terahertz waveguide based on the InAs-graphene-SiC structure. By analyzing the terahertz waveguide proposed in this paper, we can obtain that it is the characteristic of a low transmission loss coefficient (αloss 0.55 dB/m) for fundamental mode (LP01) when the incident frequency is larger than 3.0 THz. The critical radii of the inside and outside cylinders have been found for the high-quality transmission. The large inside radius and the high transmission frequency result in a fiat transmission loss coefficient curve. As a strictly two-dimensional material, the double graphene surface rings perform better to improve the quality of transmission mode. These results provide a new idea for the research of the long-distance THz waveguide.展开更多
A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were ...A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.展开更多
In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials...In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials have a broad development space.In contrast to positive photoconductivity,negative photoconductivity(NPC)refers to a phenomenon that the conductivity decreases under illumination.It has novel application prospects in the field of optoelectronics,memory,and gas detection,etc.In this paper,we review reports about the NPC effect in low-dimensional materials and systematically summarize the mechanisms to form the NPC effect in existing low-dimensional materials.展开更多
An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption c...An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12004279 and 12074283)。
文摘We demonstrate a high-performance acousto-optic modulator-based bi-frequency interferometer,which can realize either beating or beating free interference for a single-photon level quantum state.Visibility and optical efficiency of the interferometer are(99.5±0.2)%and(95±1)%,respectively.The phase of the interferometer is actively stabilized by using a dithering phase-locking scheme,where the phase dithering is realized by directly driving the acousto-optic modulators with a specially designed electronic signal.We further demonstrate applications of the interferometer in quantum technology,including bi-frequency coherent combination,frequency tuning,and optical switching.These results show the interferometer is a versatile device for multiple quantum technologies.
基金financial supports from in part by National Natural Science Foundation of China under Grants 61922061, 61775161 and 61735011in part by the Tianjin Science Fund for Distinguished Young Scholars under Grant 19JCJQJC61400
文摘A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
基金the National Natural Science Foundation of China(Grant Nos.61574011,60908012,61575008,61775007,61731019,61874145,62074011,and 62134008)the Beijing Natural Science Foundation(Grant Nos.4182015,4172011,and 4202010)Beijing Nova Program(Grant No.Z201100006820096)。
文摘Photodetectors based on two-dimensional materials have attracted much attention because of their unique structure and outstanding performance.The response speed of single ReS_(2)photodetector is slow exceptionally,the heterostructure could improves the response speed of ReS_(2)-based photodetector,but the photodetectors responsivity is reduced greatly,which restricts the development of ReS_(2).In this paper,a vertically structured ReS_(2)/SnS_(2)van der Waals heterostructure photodetectors is prepared,using ReS_(2)as the transport layer and SnS_(2)as the light absorbing layer to regulate the channel current.The device has an ultra-high photoconductive gain of 10^(10),which exhibits an ultra-high responsivity of4706 A/W under 365-nm illumination and response speed in seconds,and has an ultra-high external quantum efficiency of1.602×10^(6)%and a high detectivity of 5.29×10^(12)jones.The study for ReS_(2)-based photodetector displays great potential for developing future optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Nos.61675147,61735010 and 91838301)National Key Research and Development Program of China(No.2017YFA0700202)Basic Re-search Program of Shenzhen(JCYJ20170412154447469).
文摘If a metalens integrates the circular polarization(CP)conversion function,the focusing lens together with circular-polariz-ing lens(CPL)in traditional cameras may be replaced by a metalens.However,in terahertz(THz)band,the reported metalenses still do not obtain the perfect and strict single-handed CP,because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP(LCP)and right-handed CP(RCP)components.In this paper,a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion.Also,we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states,which can simply manipulate the focusing for incident linear polarization(LP)THz wave in three polarization conversion states,in-cluding LP without conversion,LCP and RCP.Moreover,the polarization conversion behavior is reversible,that is,the THz metalens can convert not only the LP into arbitrary single-handed CP,but also the LCP and RCP into two perpen-dicular LP,respectively.The metalens is expected to be used in advanced THz camera,as a great candidate for tradi-tional CPL and focusing lens group,and also shows potential application in polarization imaging with discriminating LCP and RCP.
基金Supported by Natural Science Foundation Project of CQ (CSTC2009BB2188)Fundamental Research Funds for Central Universities (No. CDJXS10120013)
文摘Experiments were performed on a high-speed online random neutron analyzing system (HORNA system) with a 252Cf neutron source (up to 1 GHz sampling rate and 3 input data channel),to obtain timeand frequency dependent signatures which are sensitive to changes in the composition,fissile mass and configuration of the fissile assembly.The data were acquired by three high-speed synchronized acquisition cards at different detector angles,source-detector distances and block sizes.According to the relationship between 252Cf source and the ratio of power spectral density,Rpsd,all the signatures were calculated and analyzed using correlation and periodogram methods.Based on the results,the simulated autocorrelation functions were utilized for identifying different fissile mass with Elman neural network.The experimental results show that the Rpsd almost remains at constant amplitude in frequency range of 0-100 MHz,and is only related to the angle and source-detector distance.The trained Elman neural network is able to distinguish the characteristics of autocorrelation function and identify different fissile mass.The average identification rate reached 90% with high robustness.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002013201102)the National Key Technology R & D Program of China(Grant No.2011BAE01B14)
文摘In order to investigate their electrical characteristics, high-voltage light-emitting-diodes (HV-LEDs) each contain- ing four cells in series are fabricated. The electrical parameters including varying voltage and parasitic effect are studied. It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6, 3.4, 4.7, and 6.4. IF increases linearly with the number of cells increasing. Moreover, the performance of the HV-LED with failure cells is examined, The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell. The series resistance of the failure cell is 76.8 Ω, while that of the normal cell is 21.3 Ω. The scanning electron microscope (SEM) image indicates that different metal layers do not contact well. It is hard to deposit the metal layers in the deep isolation trenches. The fabrication process of HV-LEDs needs to be optimized.
基金Project supported by the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16100)the National Natural Science Foundation of China(Grant No.61107035)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ03091502)the National Basic Research Program of China(Grant Nos.2010CB327802 and 2010CB327806)
文摘An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. G20000863-02)the Natural Science Foundation of Beijing, China (Grant No. 4032007)
文摘A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active regions, a slope efficiency as high as 1.49 W/A, a vertical divergence angle of 17.4~, and a threshold current density of 271 A/cm~ are achieved. By optimizing the structural parameters, the beam quMity is greatly improved, and the level of the COD power increases by more than two times compared with that of the conventional laser.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012 and 61076148)the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201010005030)
文摘We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675151 and 81570872)the Tianjin Municipal Science and Technology Commission Grants,China(Grant No.15JCYBJC24900)the Clinical Research Foundation of Tianjin Medical University Eye Institute,China(Grant No.16YKJS002)
文摘In recent years, the advances in terahertz applications have stimulated interest in the biological effects associated with this frequency range. We study the gene expression profile in three types of cells exposed to terahertz radiation,i.e., human ARPE-19 retinal pigment epithelial cells, simian virus 40-transformed human corneal epithelial cells, and human MIO-M1 Müller cells. We find that the gene expression in response to heat shock is unaffected, indicating that the minimum temperature increases under controlled environment. The transcriptome sequencing survey demonstrates that 6-hour irradiation with a broadband terahertz source results in specific change in gene expression and also the biological functions that are closely related to these genes. Our results imply that the effect of terahertz radiation on gene expression can last over 15 hours and depends on the type of cell.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2008AA03Z402the National Natural Science Foundation of China under Grant No 61076044the Natural Science Foundation of Beijing under Grant Nos 4092007,4102003 and 4112006.
文摘The performance of the oxide-confined surface-relief(SR)structure vertical-cavity surface-emitting laser(VCSEL)is simulated and analyzed by using the three-dimensional finite-difference time-domain(FDTD)method.The impacts of the device structure parameters on the far-field characteristics are researched.A single-fundamental-mode SR VCSEL with an oxide-aperture of 15μm is designed and produced.The single-mode power of the VCSEL is 5 mW,the threshold current is 2.5 mA,far-field divergent angles range from 7.8°to 10.8°and the side-mode suppression ratio is over 30 dB.The optical and electrical properties of the device are in agreement with the results of FDTD simulation,which shows that the SR technology can effectively suppress the higher-order-mode lasing,and make the SR VCSEL work in a single mode under a larger oxide aperture.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205096 and 61271066)
文摘A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.
基金Supported by the National Basic Research Program of China under Grant No 2007CB310403the High Education Science Technology Project of Shandong Province(No J11LG74)the Science and Technology Project of Zaozhuang(No 201127).
文摘An ultrabroad and sharp transition bandpass flexible terahertz(THz)filter is designed using a multiple-layered metamaterial.This bandpass filter has excellent filtering capability,with a 3 dB bandwidth of about 0.47 THz and sharp band-edge transitions of 80 dB/THz and 96 dB/THz,respectively,and it can be realized by a coupling individual resonance mode.We find that the geometry parameters have an influence on the transmission profile,which are capable of giving us meaningful guidance in design of high profile bandpass THz filters.The numerical results show that the multiple-layered flexible metamaterial provides an effective way to achieve ultrabroad THz devices.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the National Natural Science Foundation of China (Grant No. 61076044)the Natural Science Foundation of Beijing,China(Grant Nos. 4092007 and 4102003)
文摘A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.
文摘Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field.Here,a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization.Specifically,when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms,the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave.As function demonstrations,we have designed two types of metasurface zone plates:one is a focused linear polarizer,and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves.The simulated and measured results are consistent with theoretical expectations,suggesting that the proposed concept is flexible and feasible.Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61505138,61635008,61475114,61735011)in part by the Tianjin Science and Technology Support Plan Program Funding(Grant No.16JCQNJC01800)+2 种基金in part by the China Postdoctoral Science Foundation(Grant Nos.2015M580199,2016T90205)in part by the National Instrumentation Program(Grant No.2013YQ030915)in part by the National Key Research and Development Program(Grant No.2016YFC0100500)
文摘We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339802)the National High Technology Research and Development Program of China(Grant No.2011AA010205)+3 种基金the National Natural Science Foundation of China(Grant Nos.61107086 and 61172010)the Natural ScienceFoundation of Tianjin,China(Grant Nos.11JCYBJC01100 and 13ZCZDSF02300)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120032110053)the THz Science and Technology Foundation of China Academy of Engineering Physics(Grant Nos.CAEPTHZ201201 and CAEPTHZ201304)
文摘We demonstrate a low-loss terahertz waveguide based on the InAs-graphene-SiC structure. By analyzing the terahertz waveguide proposed in this paper, we can obtain that it is the characteristic of a low transmission loss coefficient (αloss 0.55 dB/m) for fundamental mode (LP01) when the incident frequency is larger than 3.0 THz. The critical radii of the inside and outside cylinders have been found for the high-quality transmission. The large inside radius and the high transmission frequency result in a fiat transmission loss coefficient curve. As a strictly two-dimensional material, the double graphene surface rings perform better to improve the quality of transmission mode. These results provide a new idea for the research of the long-distance THz waveguide.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204009)the Natural Science Foundation of Beijing,China(Grant No.4142005)
文摘A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574011 and 51761145025)the Key Program of the National Natural Science Foundation of China(Grant No.No.61731019)the Natural Science Foundation of Beijing,China(Grant Nos.4182015 and 4182014)。
文摘In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials have a broad development space.In contrast to positive photoconductivity,negative photoconductivity(NPC)refers to a phenomenon that the conductivity decreases under illumination.It has novel application prospects in the field of optoelectronics,memory,and gas detection,etc.In this paper,we review reports about the NPC effect in low-dimensional materials and systematically summarize the mechanisms to form the NPC effect in existing low-dimensional materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60801017,61172010,61101058,and 61107086)the Fund from the Science and Technology Committee of Tianjin,China (Grant No. 11JCYBJC01100)
文摘An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.