Objective It is still controversial about when,where and how the East Paleotethys Ocean closed due to the lack of reliable paleomagnetic data from the blocks or terranes located in both sides of the suture,which prohi...Objective It is still controversial about when,where and how the East Paleotethys Ocean closed due to the lack of reliable paleomagnetic data from the blocks or terranes located in both sides of the suture,which prohibits our better understanding of a series of key scientific issues such as how major blocks of East Asia collided together。展开更多
Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman pea...Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman peaks can be observed. However, two significant discontinuities in the plots of Raman shift versus pressure indicate two phase transitions of 1-dodecene. One is liquid^olid transition at pressure of about 500 MPa, the other is solid-solid phase transition at pressure from 1300 to 1550 MPa. The latter is considered to be related to the orientational change of the plane structure of ethylene. A rudimentary phase diagrams for 1-dodecene, n-pentane, n-hexane are proposed based on the results and previous data.展开更多
基金financially supported by the National Natural Science Foundation of China (grants No. 41190071 and 41702229)
文摘Objective It is still controversial about when,where and how the East Paleotethys Ocean closed due to the lack of reliable paleomagnetic data from the blocks or terranes located in both sides of the suture,which prohibits our better understanding of a series of key scientific issues such as how major blocks of East Asia collided together。
文摘Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman peaks can be observed. However, two significant discontinuities in the plots of Raman shift versus pressure indicate two phase transitions of 1-dodecene. One is liquid^olid transition at pressure of about 500 MPa, the other is solid-solid phase transition at pressure from 1300 to 1550 MPa. The latter is considered to be related to the orientational change of the plane structure of ethylene. A rudimentary phase diagrams for 1-dodecene, n-pentane, n-hexane are proposed based on the results and previous data.