期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hydrogen Sulfide May Function Downstream of Nitric Oxide in Ethylene-Induced Stomatal Closure in Vicia faba L. 被引量:12
1
作者 LIU Jing HOU Zhi-hui +2 位作者 LIU Guo-hua HOU Li-xia LIU Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1644-1653,共10页
Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal ... Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal movement in response to ethylene in Viciafaba L. Ethylene treatment resulted in the dose-dependent stomatal closure under light, and this effect was blocked by the inhibitors of H2S biosynthesis in V. faba L. Additionally, ethylene induces H2S generation and increases L-/D-cysteine desulfhydrase (pyridoxalphosphate-dependent enzyme) activity in leaves of V. faba L. Inhibitors of H2S biosynthesis have no effect on the ethylene-induced stomatal closure, NO accumulation, and nitrate reductase (NR) activity in guard cells or leaves of II. faba L. Moreover, the ethylene-induced increase of H2S levels and L-/D- cysteine desulfhydrase activity declined when NO generation was inhibited. Therefore, we conclude that H2S and NO probably are involved in the signal transduction pathway of ethylene-induced stomatal closure. H2S may represent a novel component downstream of NO in the ethylene-induced stomatal movement in V. faba L. 展开更多
关键词 hydrogen sulfide nitric oxide ETHYLENE stomatal closure Vicia faba L.
下载PDF
Physiological and Biochemical Mechanisms of Exogenous Calcium Chloride on Alleviating Salt Stress in Two Tartary Buckwheat(Fagopyrum tataricum)Varieties Differing in Salinity Tolerance 被引量:5
2
作者 Tao Zhang Hongbing Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第8期1643-1658,共16页
Salt stress is one of the most serious abiotic stresses limiting plant growth and development.Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adver... Salt stress is one of the most serious abiotic stresses limiting plant growth and development.Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect of salinity on plants.This study aimed to investigate the impact of exogenous calcium on improving salt tolerance in Tartary buckwheat cultivars,cv.Xinong9920(salt-tolerant)and cv.Xinong9909(salt-sensitive).Four-week-old Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride(CaCl_(2)),Ca^(2+)chelator ethylene glycol tetraacetic acid(EGTA)and Ca^(2+)-channel blocker lanthanum chloride(LaCl_(3))for 10 days.Then,some important physiological and biochemical indexes were determined.The results showed that salt stress significantly reduced seedling growth,decreased photosynthetic pigments,inhibited antioxidants and antioxidant enzyme activities.However,it increased the reactive oxygen species(ROS)levels in the two Tartary buckwheat cultivars.Exogenous 10 mM CaCl_(2)application on salt-stressed Tartary buckwheat seedlings obviously mitigated the negative effects of NaCl stress and partially restored seedlings growth.Ca^(2+)-treated salt-stressed seedlings diplayed a suppressed accumulation of ROS,increased the contents of total chlorophyll,soluble protein,proline and antioxidants,and elevated the activities of antioxidant enzymes compared with salt stress alone.On the contrary,the addition of 0.5 mM LaCl_(3)and 5 mM EGTA on salt-stressed Tartary buckwheat seedlings exhibited the opposite effects to those with CaCl_(2)treatment.These results indicate that exogenous Ca^(2+)can enhance salt stress tolerance and Ca^(2+)supplementation may be an effective practice to cultivate Tartary buckwheat in saline soils. 展开更多
关键词 Salt stress CALCIUM antioxidant enzymes ROS scavenging OSMOPROTECTION tartary buckwheat
下载PDF
Identification of Polymorphic Markers by High-Resolution Melting(HRM)Assay for High-Throughput SNP Genotyping in Maize 被引量:1
3
作者 Zhigang Shang Yongzhe Zhu +1 位作者 Xinmei Guo Meiai Zhao 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第6期1711-1725,共15页
The development of next generation sequencing(NGS)and high throughput genotyping are important techniques for the QTL mapping and genetic analysis of different crops.High-resolution melting(HRM)is an emerging technolo... The development of next generation sequencing(NGS)and high throughput genotyping are important techniques for the QTL mapping and genetic analysis of different crops.High-resolution melting(HRM)is an emerging technology used for detecting single-nucleotide polymorphisms(SNPs)in various species.However,its use is still limited in maize.The HRM analysis was integrated with SNPs to identify three types of populations(NIL population,RIL population and natural population),and the useful tags were screened.The patterns of temperatureshifted melting curves were investigated from the HRM analysis,and compared these with the kit.Among all 48 pairs of primers,10 pairs of them were selected:six pairs of primers for the NIL population,three pairs of primers for the RIL population,and one pair of primer for the natural population.The marker for the natural population was developed with a matching rate of 80%for the plant height trait,based on the data of the phenotypic characteristics measured in the field.This study provides an effective method for maize genotyping in the classification of maize germplasm resources,which can be applied to other plants for high-throughput SNP genotyping or further mapping. 展开更多
关键词 MAIZE high-throughput genotyping HRM SNP
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部