期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal battery with commercial mass loading high-nickel NMC and thin anodes
1
作者 Jun Yang Xing Li +17 位作者 Ke Qu Yixian Wang Kangqi Shen Changhuan Jiang Bo Yu Pan Luo Zhuangzhi Li Mingyang Chen Bingshu Guo Mingshan Wang Junchen Chen Zhiyuan Ma Yun Huang Zhenzhong Yang Pengcheng Liu Rong Huang Xiaodi Ren David Mitlin 《Carbon Energy》 SCIE CSCD 2023年第3期2-18,共17页
A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes ... A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites. 展开更多
关键词 concentrated electrolyte density functional theory ether electrolyte high‐nickel cathode high‐voltage battery molecular dynamics
下载PDF
Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO_(3)(001) substrates
2
作者 张海民 宋德志 +2 位作者 黄扶旸 仉君 蒋烨平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期85-89,共5页
Materials' properties may differ in the thin-film form, especially for epitaxial ultra-thin films, where the substrates play an important role in their deviation from the bulk quality. Here by molecular beam epita... Materials' properties may differ in the thin-film form, especially for epitaxial ultra-thin films, where the substrates play an important role in their deviation from the bulk quality. Here by molecular beam epitaxy(MBE) and scanning tunneling microscopy/spectroscopy, we investigate the growth kinetics of ultra-thin tellurium(Te) films on SrTiO_(3)(STO)(001). The MBE growth of Te films usually exhibits Volmer–Weber(VW) island growth mode and no a-few-monolayer film with full coverage has been reported. The absence of wetting-layer formation in the VW growth mode of Te on STO(001) is resulted from its low diffusion barriers as well as its relatively higher surface energy compared with those of the substrate and the interface. Here we circumvent these limiting factors and achieve the growth of ultra-thin β-Te films with near-complete coverages by driving the growth kinetics to the extreme condition. There is a critical thickness(3 monolayer) above which the two-dimensional Te films can form on the STO(001) substrate. In addition, the scanning tunneling spectra on the ultra-thin Te film grown on STO exhibits an enormously large forbidden gap compared with that grown on the graphene substrate. Our work establishes the necessary conditions for the growth of ultra-thin materials with similar kinetics and thermodynamics. 展开更多
关键词 molecular beam epitaxy ultra-thin films electronic structure
下载PDF
Signatures of Quantum Criticality in the Complex Inverse Temperature Plane
3
作者 刘洋 吕松泰 +1 位作者 杨洋 邹海源 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第5期14-18,共5页
Concepts of the complex partition functions and the Fisher zeros provide intrinsic statistical mechanisms for finite temperature and real time dynamical phase transitions.We extend the utility of these complexificatio... Concepts of the complex partition functions and the Fisher zeros provide intrinsic statistical mechanisms for finite temperature and real time dynamical phase transitions.We extend the utility of these complexifications to quantum phase transitions.We exactly identify different Fisher zeros on lines or closed curves and elucidate their correspondence with domain-wall excitations or confined mesons for the one-dimensional transverse field Ising model.The crossover behavior of the Fisher zeros provides a fascinating picture for criticality near the quantum phase transition,where the excitation energy scales are quantitatively determined.We further confirm our results by tensor network calculations and demonstrate a clear signal of deconfined meson excitations from the disruption of the closed zero curves.Our results unambiguously show significant features of Fisher zeros for a quantum phase transition and open up a new route to explore quantum criticality. 展开更多
关键词 EXCITATION QUANTUM MESON
下载PDF
Gapless Spin Liquid and Nonlocal Corner Excitation in the Spin-1/2 Heisenberg Antiferromagnet on Fractal
4
作者 邹海源 王巍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第5期94-98,共5页
Motivated by the mathematical beauty and the recent experimental realizations of fractal systems,we study the spin-1/2 antiferromagnetic Heisenberg model on a Sierpiński gasket.The fractal porous feature generates ne... Motivated by the mathematical beauty and the recent experimental realizations of fractal systems,we study the spin-1/2 antiferromagnetic Heisenberg model on a Sierpiński gasket.The fractal porous feature generates new kinds of frustration to exhibit exotic quantum states.Using advanced tensor network techniques,we identify a quantum gapless-spin-liquid ground state in fractional spatial dimension.This fractal spin system also demonstrates nontrivial nonlocal properties.While the extremely short-range correlation causes a highly degenerate spin form factor,the entanglement in this fractal system suggests a long-range scaling behavior.We also study the dynamic structure factor and clearly identify the gapless excitation with a stable corner excitation emerged from the ground-state entanglement.Our results unambiguously point out multiple essential properties of this fractal spin system,and open a new route to explore spin liquid and frustrated magnetism. 展开更多
关键词 properties FRACTAL HEISENBERG
下载PDF
Ferroelectricity of pristine Hf_(0.5)Zr_(0.5)O_(2) films fabricated by atomic layer deposition
5
作者 陈璐秋 张晓旭 +12 位作者 冯光迪 刘逸飞 郝胜兰 朱秋香 冯晓钰 屈可 杨振中 祁原深 Yachin Ivry Brahim Dkhil 田博博 褚君浩 段纯刚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期684-688,共5页
Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers... Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments. 展开更多
关键词 Hf_(0.5)Zr_(0.5)O_(2)(HZO) FERROELECTRIC ORTHORHOMBIC without annealing
下载PDF
Nearly degenerate ground states of a checkerboard antiferromagnet and their bosonic interpretation
6
作者 Haiyuan Zou Fan Yang Wei Ku 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第1期84-89,共6页
The spin-1/2 model system with antiferromagnetic(AF) couplings on a J1-J2checkerboard lattice, known as the planar pyrochlore model, is strongly frustrated and associated with a two-to-one dimensional crossover. Using... The spin-1/2 model system with antiferromagnetic(AF) couplings on a J1-J2checkerboard lattice, known as the planar pyrochlore model, is strongly frustrated and associated with a two-to-one dimensional crossover. Using the Projected Entangled Simplex States tensor network ansatz, we identify a large number of nearly degenerate states in the frustrated region(J_(1)<J_(2)).Specifically, we find the long-sought crossed-dimer valence bond solid(VBS) state to be the ground state at J_(1)≤J_(2), while various 1D AF correlated states take over the rest. We verify the stability of the VBS state against nematic perturbation. The corresponding bosonic picture provides an intuitive understanding of the low-energy physics. Particularly, it predicts weaker VBS states in the easy-plane limit, which we confirm numerically. Our results clarify the most essential ground state properties of this interesting system and demonstrate the usefulness of bosonic picture in dealing with frustrated magnetism. 展开更多
关键词 tensor networks frustrated magnetism dimensional crossover degenerate states
原文传递
First-principles study on the alkali chalcogenide secondary compounds in Cu(In,Ga)Se_2 and Cu_2ZnSn(S,Se)_4 thin film solar cells 被引量:1
7
作者 Xian Zhang Dan Han +2 位作者 Shiyou Chen Chungang Duan Junhao Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1140-1150,共11页
The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the... The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance. 展开更多
关键词 Cu(In Ga)Se2 and Cu2ZnSn(S Se)4 Thin film solar cells First-principles calculations Secondary phases Alkali dopants
下载PDF
First-principles exploration of defect-pairs in GaN 被引量:1
8
作者 He Li Menglin Huang Shiyou Chen 《Journal of Semiconductors》 EI CAS CSCD 2020年第3期23-31,共9页
Using first-principles calculations,we explored all the 21 defect-pairs in GaN and considered 6 configurations with different defect-defect distances for each defect-pair.15 defect-pairs with short defect–defect dist... Using first-principles calculations,we explored all the 21 defect-pairs in GaN and considered 6 configurations with different defect-defect distances for each defect-pair.15 defect-pairs with short defect–defect distances are found to be stable during structural relaxation,so they can exist in the GaN lattice once formed during the irradiation of high-energy particles.9 defect-pairs have formation energies lower than 10 eV in the neutral state.The vacancy-pair VN–VN is found to have very low formation energies,as low as 0 eV in p-type and Ga-rich GaN,and act as efficient donors producing two deep donor levels,which can limit the p-type doping and minority carrier lifetime in GaN.VN–VN has been overlooked in the previous study of defects in GaN.Most of these defect-pairs act as donors and produce a large number of defect levels in the band gap.Their formation energies and concentrations are sensitive to the chemical potentials of Ga and N,so their influences on the electrical and optical properties of Ga-rich and N-rich GaN after irradiation should differ significantly.These results about the defect-pairs provide fundamental data for understanding the radiation damage mechanism in GaN and simulating the defect formation and diffusion behavior under irradiation. 展开更多
关键词 GAN first-principles calculations radiation damage defect-pairs point defects
下载PDF
Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH3NH3PbI3 被引量:1
9
作者 张越宇 陈时友 +4 位作者 许朋 向红军 龚新高 Aron Walsh 魏苏淮 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第3期52-57,共6页
The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical ... The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of CH3NH3PbI3 solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH3NH3PbI3 is thermodynamically unstable with respect to the phase separation into CH3NH3I + PbI2, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombie phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH3NH3PbI3 is unchanged. When I is replaced by Br or CI, Pb by Sn, or the organic cation CH3NH3 by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH3NH3PbI3 and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells. 展开更多
关键词 NH Pb CH Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH3NH3PbI3
下载PDF
Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications
10
作者 越方禹 马骕驭 +4 位作者 洪进 杨平雄 敬承斌 陈晔 褚君浩 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期52-64,共13页
Narrow-gap Hg_(1-x)Cd_x Te material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x ≈ 0.3 are re... Narrow-gap Hg_(1-x)Cd_x Te material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x ≈ 0.3 are reviewed, including the defects and defect levels of intrinsic V_(Hg) and the extrinsic amphoteric arsenic(As) dopants, which can act as shallow/deep donors and acceptors. The influence of the defects on the determination of band-edge electronic structure is discussed when absorption or photoluminescence spectra are considered. The inconsistency between these two optical techniques is demonstrated and analyzed by taking into account the Fermi level position as a function of composition, doping level,conductivity type, and temperature. The defect level and its evolution, especially in As-doped HgCdTe, are presented. Our results provide a systematic understanding of the mechanisms and help for optimizing annealing conditions towards p-type As-activation, and eventually for fabricating high performance mid-infrared detectors. 展开更多
关键词 HGCDTE DEFECTS ANNEALING PROCEDURES optical characterization
下载PDF
Theoretical study on the kesterite solar cells based on Cu_2ZnSn(S,Se)_4 and related photovoltaic semiconductors
11
作者 刘定荣 韩丹 +4 位作者 黄梦麟 张弦 张涛 戴称民 陈时友 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期37-48,共12页
The kesterite thin film solar cells based on the quaternary Cu2ZnSnS4 and Cu2ZnSnSe4 and their alloys Cu2ZnSn(S,Se)4 have been considered as environment-friendly and non-toxic alternatives to the currently commercia... The kesterite thin film solar cells based on the quaternary Cu2ZnSnS4 and Cu2ZnSnSe4 and their alloys Cu2ZnSn(S,Se)4 have been considered as environment-friendly and non-toxic alternatives to the currently commercialized CdTe and Cu(In,Ga)Se2 thin film solar cells. From the theoretical point of view, we will review how the group I2-II-IV-VI4 quaternary compound semiconductors are derived from the binary CdTe and the ternary CuInSe2 or CuGaSe2 through the cation mutation, and how the crystal structure and electronic band structure evolve as the component elements change. The increased structural and chemical freedom in these quaternary semiconductors opens up new possibility for the tailoring of material properties and design of new light-absorber semiconductors. However, the increased freedom also makes the development of high-efficiency solar cells more challenging because much more intrinsic point defects, secondary phases, surfaces, and grain-boundaries can exist in the thin films and influence the photovoltaic performance in a way different from that in the conventional CdTe and Cu(In,Ga)Se2 solar cells. The experimental characterization of the properties of defects, secondary phase, and grain-boundaries is currently not very efficient and direct, especially for these quaternary compounds. First-principles calculations have been successfully used in the past decade for studying these properties. Here we will review the theoretical progress in the study of the mixed-cation and mixed-anion alloys of the group I2-II-IV- VI4 semiconductors, defects, alkaline dopants, and grain boundaries, which provided very important information for the optimization of the kesterite solar cell performance. 展开更多
关键词 kesterite thin film solar cells Cu2ZnSnS4 and Cu2ZnSnSe4 first-principles calculations defects and dopants
下载PDF
Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe
12
作者 闫赛超 魏金宸 +3 位作者 王珊珊 黄梦麟 吴宇宁 陈时友 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期60-66,共7页
GeSe has recently emerged as a photovoltaic absorber material due to its attractive optical and electrical properties as well as earth abundancy and low toxicity.However,the efficiency of GeSe thin-film solar cells(TF... GeSe has recently emerged as a photovoltaic absorber material due to its attractive optical and electrical properties as well as earth abundancy and low toxicity.However,the efficiency of GeSe thin-film solar cells(TFSCs)is still low compared to the Shockley–Queisser limit.Point defects are believed to play important roles in the electrical and optical properties of GeSe thin films.Here,we perform first-principles calculations to study the defect characteristics of GeSe.Our results demonstrate that no matter under the Ge-rich or Se-rich condition,the Fermi level is always located near the valence band edge,leading to the p-type conductivity of undoped samples.Under Se-rich condition,the Ge vacancy(V_(Ge))has the lowest formation energy,with a(0/2–)charge-state transition level at 0.22 eV above the valence band edge.The high density(above 10^(17)cm^(-3))and shallow level of VGeimply that it is the p-type origin of GeSe.Under Se-rich growth condition,Seihas a low formation energy in the neutral state,but it does not introduce any defect level in the band gap,suggesting that it neither contributes to electrical conductivity nor induces non-radiative recombination.In addition,Gei introduces a deep charge-state transition level,making it a possible recombination center.Therefore,we propose that the Se-rich condition should be adopted to fabricate high-efficiency GeSe solar cells. 展开更多
关键词 GeSe bulk point defect concentration PHOTOVOLTAIC
下载PDF
Recent advances, perspectives, and challenges inferroelectric synapses
13
作者 田博博 钟妮 段纯刚 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期15-30,共16页
The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: ... The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network. 展开更多
关键词 FERROELECTRIC SYNAPSE ferroelectric tunnel junctions ferroelectric field effect transistors
下载PDF
Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO_(3)(001)
14
作者 邵倾蓉 孟婧 +6 位作者 朱晓艳 谢亚丽 程文娟 蒋冬梅 徐杨 商恬 詹清峰 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期605-611,共7页
Exchange coupling across the interface between a ferromagnetic(FM)layer and an antiferromagnetic(AFM)or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy,which has ... Exchange coupling across the interface between a ferromagnetic(FM)layer and an antiferromagnetic(AFM)or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy,which has been extensively studied due to the important application in magnetic materials and devices.In this work,we observed a fourfold magnetic anisotropy in amorphous Co Fe B layer when exchange coupling to an adjacent Fe Rh layer which is epitaxially grown on an SrTiO_(3)(001)substrate.As the temperature rises from 300 K to 400 K,Fe Rh film undergoes a phase transition from AFM to FM phase,the induced fourfold magnetic anisotropy in the Co Fe B layer switches the orientation from the Fe Rh<110>to Fe Rh<100>directions and the strength is obviously reduced.In addition,the effective magnetic damping as well as the two-magnon scattering of the Co Fe B/Fe Rh bilayer also remarkably increase with the occurrence of magnetic phase transition of Fe Rh.No exchange bias is observed in the bilayer even when Fe Rh is in the nominal AFM state,which is probably because the residual FM Fe Rh moments located at the interface can well separate the exchange coupling between the below pinned Fe Rh moments and the Co Fe B moments. 展开更多
关键词 magnetic anisotropy phase transition CoFeB/FeRh exchange coupling
下载PDF
Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
15
作者 赵佳鹏 郭勤皇 +5 位作者 尹慧中 邹锦堂 赵振杰 程文娟 蒋冬梅 詹清峰 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期479-484,共6页
The magneto-mechanical coupling effect and magnetic anisotropy of Fe10Co90(FeCo)films deposited on silicon wafer(Si),flexible polyethylene terephthalate(PET),freestanding polydimethylsiloxane(PDMS),and pre-stretched 2... The magneto-mechanical coupling effect and magnetic anisotropy of Fe10Co90(FeCo)films deposited on silicon wafer(Si),flexible polyethylene terephthalate(PET),freestanding polydimethylsiloxane(PDMS),and pre-stretched 20%PDMS substrates were studied in detail.The loop squareness ratio Mr/Ms and the coercive Hc of the FeCo film grown on a PET substrate can be obviously tuned by applying a small tensile-bending strain,and those of the FeCo film grown on a freestanding PDMS substrate can only be slightly changed when applying a relatively large tensile bending strain.For the FeCo film prepared on a 20%pre-stretched PDMS,a wrinkled morphology is obtained after removing the pre-strain.The wrinkled FeCo film can keep the magnetic properties unchanged when applying a relatively large tensile bending strain perpendicular to the wrinkles.This reveals that PDMS is an ideal substrate for magnetic films to realize flexible immutability.Our results may help for developing flexible magnetic devices. 展开更多
关键词 flexible substrates FeCo films magnetic anisotropy magneto-mechanical coupling effect
下载PDF
Molecular beam epitaxy growth of monolayer hexagonal MnTe_(2)on Si(111)substrate
16
作者 卢帅 彭坤 +16 位作者 王鹏栋 陈爱喜 任伟 方鑫伟 伍莹 李治云 李慧芳 程飞宇 熊康林 杨继勇 王俊忠 丁孙安 蒋烨平 王利 李青 李坊森 迟力峰 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期142-147,共6页
Monolayer MnTe_(2)stabilized as 1 T structure has been theoretically predicted to be a two-dimensional(2 D)ferromagnetic metal and can be tuned via strain engineering.There is no naturally van der Waals(vdW)layered Mn... Monolayer MnTe_(2)stabilized as 1 T structure has been theoretically predicted to be a two-dimensional(2 D)ferromagnetic metal and can be tuned via strain engineering.There is no naturally van der Waals(vdW)layered MnTe_(2)bulk,leaving mechanical exfoliation impossible to prepare monolayer MnTe_(2).Herein,by means of molecular beam epitaxy(MBE),we successfully prepared monolayer hexagonal MnTe_(2)on Si(111)under Te rich condition.Sharp reflection high-energy electron diffraction(RHEED)and low-energy electron diffraction(LEED)patterns suggest the monolayer is atomically flat without surface reconstruction.The valence state of Mn^(4+)and the atom ratio of([Te]:[Mn])further confirm the MnTe_(2)compound.Scanning tunneling spectroscopy(STS)shows the hexagonal MnTe_(2)monolayer is a semiconductor with a large bandgap of~2.78 eV.The valence-band maximum(VBM)locates at theΓpoint,as illustrated by angle-resolved photoemission spectroscopy(ARPES),below which three hole-type bands with parabolic dispersion can be identified.The successful synthesis of monolayer MnTe_(2)film provides a new platform to investigate the 2D magnetism. 展开更多
关键词 molecular beam epitaxy hexagonal MnTe_(2) band structure
下载PDF
Nanodevices engineering and spin transport properties of MnBi_(2)Te_(4) monolayer 被引量:1
17
作者 Yipeng An Kun Wang +9 位作者 Shijing Gong Yusheng Hou Chunlan Ma Mingfu Zhu Chuanxi Zhao Tianxing Wang Shuhong Ma Heyan Wang Ruqian Wu Wuming Liu 《npj Computational Materials》 SCIE EI CSCD 2021年第1期414-421,共8页
Two-dimensional(2D)magnetic materials are essential for the development of the next-generation spintronic technologies.Recently,layered van der Waals(vdW)compound MnBi2Te4(MBT)has attracted great interest,and its 2D s... Two-dimensional(2D)magnetic materials are essential for the development of the next-generation spintronic technologies.Recently,layered van der Waals(vdW)compound MnBi2Te4(MBT)has attracted great interest,and its 2D structure has been reported to host coexisting magnetism and topology.Here,we design several conceptual nanodevices based on MBT monolayer(MBT-ML)and reveal their spin-dependent transport properties by means of the first-principles calculations.The pn-junction diodes and sub-3-nm pin-junction field-effect transistors(FETs)show a strong rectifying effect and a spin filtering effect,with an ideality factor n close to 1 even at a reasonably high temperature.In addition,the pip-and nin-junction FETs give an interesting negative differential resistive(NDR)effect.The gate voltages can tune currents through these FETs in a large range.Furthermore,the MBT-ML has a strong response to light.Our results uncover the multifunctional nature of MBT-ML,pave the road for its applications in diverse next-generation semiconductor spin electric devices. 展开更多
关键词 temperature IDEALITY TRANSPORT
原文传递
A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency 被引量:20
18
作者 Jianqiang Qin Lixiu Zhang +10 位作者 Chuantian Zuo Zuo Xiao Yongbo Yuan Shangfeng Yang Feng Hao Ming Cheng Kuan Sun Qinye Bao Zhengyang Bin Zhiwen Jin and Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期11-15,16-23,共13页
The rapid development of low-bandgap(LBG)nonfullerene acceptors and wide-bandgap(WBG)copolymer donors in recent years has boosted the power conversion efficiency(PCE)of organic solar cells(OSCs)to the 18%level[1−21].T... The rapid development of low-bandgap(LBG)nonfullerene acceptors and wide-bandgap(WBG)copolymer donors in recent years has boosted the power conversion efficiency(PCE)of organic solar cells(OSCs)to the 18%level[1−21].The commercialization of OSCs is highly expected.However,critical issues like the cost and the stability also determine whether OSCs can enter the market or not[22]. 展开更多
关键词 COPOLYMER DONOR STABILITY
下载PDF
Indirect-direct band gap transition of two-dimensional arsenic layered semiconductors—cousins of black phosphorus 被引量:3
19
作者 LUO Kun CHEN ShiYou DUAN ChunGang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第8期79-85,共7页
The monolayer arsenic in the puckered honeycomb structure was recently predicted to be a stable two-dimensional layered semiconductor and therefore named arsenene. Unfortunately, it has an indirect band gap, which lim... The monolayer arsenic in the puckered honeycomb structure was recently predicted to be a stable two-dimensional layered semiconductor and therefore named arsenene. Unfortunately, it has an indirect band gap, which limits its practical application. Using first-principles calculations, we show that the band gaps of few-layer arsenic have an indirect-direct transition as the number of arsenic layers(n) increases from n=1 to n=2. As n increases from n=2 to infinity, the stacking of the puckered honeycomb arsenic layers forms the orthorhombic arsenic crystal ??-As, arsenolamprite), which has a similar structure to the black phosphorus and also has a direct band gap. This indirect-direct transition stems from the distinct quantum-confinement effect on the indirect and direct band-edge states with different wavefunction distribution. The strain effect on these electronic states is also studied, showing that the in-plane strains can induce very different shift of the indirect and direct band edges, and thus inducing an indirect-direct band gap transition too. The band gap dependence on strain is non-monotonic, with both positive and negative deformation potentials. Although the gap of arsenene opens between As p-p bands, the spin-orbit interaction decreases the gap by only 0.02 e V, which is much smaller than the decrease in Ga As with an s-p band gap. The calculated band gaps of arsenene and ?-As using the hybrid functional are 1.4 and 0.4 e V respectively, which are comparable to those of phosphorene and black phosphorus. 展开更多
关键词 直接带隙 半导体 间接 磷酸 跃迁 层状 二维 黑色
原文传递
Highly active cobalt-doped nickel sulfide porous nanocones for high-performance quasi-solid-state zinc-ion batteries 被引量:2
20
作者 Xin Tong Yun Li +6 位作者 Ning Pang Yang Zhou Dajun Wu Dayuan Xiong Shaohui Xu Lianwei Wang Paul K.Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期237-249,I0008,共14页
Flexible quasi-solid zinc-ion batteries(ZIBs)have large potential in power applications due to the low price,wearable nature,safety,and high capacity.However,the use of transition metal sulfide cathodes in ZIBs has no... Flexible quasi-solid zinc-ion batteries(ZIBs)have large potential in power applications due to the low price,wearable nature,safety,and high capacity.However,the use of transition metal sulfide cathodes in ZIBs has not been studied extensively and the underlying mechanism and theoretical basis of this type of batteries are not well understood.Herein,a highly active cobalt-doped Ni_(3)S_(2) porous nanocone framework(C12NS)is designed and demonstrated as a zinc-ion battery electrode.First-principles calculation and experiments reveal that the cobalt dopant improves the battery properties greatly.The assembled flexible zinc-ion battery exhibits a high specific capacity of 453.3 mAh g^(−1)at a current density of 0.4 A g^(−1)in as well as excellent cycling stability as manifested by a capacity retention ratio of 89.5%at a current density of 4 A g^(−1)after 5000 cycles.The peak energy density of 553.9 Wh kg^(−1)is also superior to those of most recently reported NiCo-based zinc-ion batteries.More importantly,the flexible battery can be operated under severe mechanical bending and even continues to work after physical puncturing without showing leakage.These exciting results not only reveal a novel design of cathode materials for zinc-based batteries,but also suggest their immense commercial potential in portable and wearable electronics. 展开更多
关键词 Zn-ion battery Quasi-solid electrolyte NANOCONE DOPING Wearable electronic
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部