期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Alkaline zinc-based flow battery: chemical stability, morphological evolution, and performance of zinc electrode with ionic liquid
1
作者 Tianyong Mao Jing Dai +2 位作者 Meiqing Xin Deliang Zeng Zhipeng Xie 《Frontiers of Materials Science》 SCIE CSCD 2024年第1期113-121,共9页
Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials,low cost,and environmental friendliness.The chemical stability of zinc electr... Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials,low cost,and environmental friendliness.The chemical stability of zinc electrodes exposed to electrolyte is a very important issue for zinc-based batteries.This paper reports on details of chemical stability of the zinc metal exposed to a series of solutions,as well as the relationship between the morphological evolution of zinc electrodes and their properties in an alkaline medium.Chemical corrosion of zinc electrodes by the electrolyte will change their surface morphology.However,we observed that chemical corrosion is not the main contributor to the evolution of zinc electrode surface morphology,but the main contributor is the Zn/Zn^(2+)electrode process.The morphological evolution of zinc electrodes was controlled by using ionic liquids,1-ethyl-3-methylimidazolium acetate(EMIA),and 1-propylsulfonic-3-methylimidazolium tosylate(PSMIT),and the electrode performance was recorded during the morphological evolution process.It was observed that the reversible change of zinc electrode morphology was accompanied by better electrode performance. 展开更多
关键词 alkaline medium morphological evolution zinc-based flow battery new energy
原文传递
Auxiliary ball milling to prepare WS_(2)/graphene nanosheets composite for lithium-ion battery anode materials 被引量:2
2
作者 Yong-Lin Wu Jia-Bin Hong +3 位作者 Wei-Xu Zhong Chun-Xiang Wang Zhi-Feng Li Sydorov Dmytro 《Tungsten》 EI CSCD 2024年第1期124-133,共10页
A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes ... A novel nano-WS_(2)/graphene nanosheets(GNSs)composite is obtained by ball milling with xylitol as auxiliary agent and hightemperature sintering.Xylitol improves the shear force during ball milling and well overcomes the van der Waals interactions between the interlayer of graphite and WS_(2).Through high-temperature calcination,GNSs and WS_(2) nanosheets can form tight interface contact.The produced WS_(2)/GNSs composites can be used as anode materials for lithium-ion batteries,while maintaining a high reversible specific capacity of 705 mAh·g^(-1)with the capacity retention of 95%at a current density of 250 mA·g^(-1)after 200 cycles,mainly because WS_(2)/GNSs composites have a higher Li^(+)diffusion coefficient of 2.2×10^(-9)cm^(2)·s^(-1)and a higher specific surface area of 70.10 m^(2)·g^(-1).As a result,the xylitol-assisted ball milling method designed in this work is suitable for extended preparation of peeling of two-dimensional layer materials into nanosheets. 展开更多
关键词 Lithium-ion battery Anode material WS_(2) Graphene nanosheets Auxiliary ball milling
原文传递
Effects of long-term fast charging on a layered cathode for lithium-ion batteries 被引量:1
3
作者 Jingwei Hu Fengsong Fan +2 位作者 Qian Zhang Shengwen Zhong Quanxin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期604-612,共9页
Fast charging, which aims to shorten recharge times to 10–15 min, is crucial for electric vehicles(EVs),but battery capacity usually decays rapidly if batteries are charged under such severe conditions.Revealing the ... Fast charging, which aims to shorten recharge times to 10–15 min, is crucial for electric vehicles(EVs),but battery capacity usually decays rapidly if batteries are charged under such severe conditions.Revealing the failure mechanism is a prerequisite to improving the charging performance of lithium(Li)-ion batteries. Previous studies have focused less on cathode materials while also mostly focusing on their early changes. Thus, the cumulative effect of long-term fast charging on cathode materials has not been fully studied. Here, we study the changes in a layered cathode material during 1000 cycles of 6 C charging based on 1.6 Ah LiCoO_(2)/graphite pouch cells. Postmortem analysis reveals that the surface structure, charge transfer resistance and Li-ion diffusion coefficient of the cathode degenerate during repeated fast charging, causing a large increase in polarization. This polarization-induced poor utilization of the Li inventory is an important reason for the rapid capacity fading of batteries. These findings deepen the understanding of the aging mechanism for cells undergoing fast charging and can be used as benchmarks for the future development of high-capacity, fast-charging layered cathode materials. 展开更多
关键词 Fast charging Layered cathode Failure mechanism Lithium-ion batteries Capacity fading
下载PDF
Electrocatalytic performance of CNTs/graphene composited rare earth phthalocyanines(M=La,Y,Yb,Sc)
4
作者 Tingting Jiang Caixia Ou +5 位作者 Luyi Wang Jun Chen Sydorov Dmytro Qian Zhang Jintian Luo Hua Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第2期323-333,I0004,共12页
In this study,a class of rare earth composite sandwich phthalocyanines(MPcs,M=La,Y,Yb,Sc) were prepared and compounded with graphene and carbon nanotubes to obtain MPc/Gr and MPc/CNTs composites.The electrocatalytic b... In this study,a class of rare earth composite sandwich phthalocyanines(MPcs,M=La,Y,Yb,Sc) were prepared and compounded with graphene and carbon nanotubes to obtain MPc/Gr and MPc/CNTs composites.The electrocatalytic behaviors of MPc/Gr and MPc/CNTs electrodes were further investigated.The results show that the central rare earth metal has a large influence on the electrocatalytic performance.For the MPcs/Gr samples,ScPc with the smallest ionic radius and molecular size can be more uniformly dispersed in graphene,and the hydrogen precipitation overpotential of ScPc/Gr electrode is514 mV,corresponding to a Tafel slope of 148 mV/dec,with better electrocatalytic performance than other rare earth metal phthalocyanines.As for the MPc/CNTs composites,LaPc,which has the largest ionic radius and molecular size,is more uniformly dispersed on the surface of CNTs,so that the LaPc/CNT electrode exhibits the best LSV performance with the smallest corresponding Tafel slope(176 mV/dec).The main reason is the different binding modes of MPcs molecules in Gr and CNTs.When rare earth phthalocyanine is combined with layered graphene,the smallest size of rare earth phthalocyanine(ScPc)is more easily embedded in the graphene layer,resulting in better homogeneity of the composite,larger effective contact area and better electrocatalytic performance.In contrast,when rare earth phthalocyanine is bound to carbon nanotubes in a tubular structure,it is mainly bound by attaching to the surface or being entangled by the carbon nanotubes.In this case,the rare-earth phthalocyanine molecules(LaPc)with larger layer spacing can provide more contact area with CNTs,forming a more uniform and effective composite,which eventually provides more active sites and better electrocatalytic performance. 展开更多
关键词 ELECTROCATALYSIS Rare earth phthalocyanines Graphene(Gr) Carbon nanotubes(CNTs) Composite
原文传递
High-performance of sodium carboxylate-derived materials for electrochemical energy storage
5
作者 Yong Xu1 Jun Chen1 +7 位作者 Caijian Zhu1 Pengwei Zhang1 Guoxiang Jiang1 Chunxiang Wang1 Qian Zhang1 Nengwen Ding1 Yaxiang Huang2 Shengwen Zhong1 《Science China Materials》 SCIE EI CSCD 2018年第5期707-718,共12页
Four types of sustainable sodium carboxylate- derived materials are investigated as novel electrodes with high performance for lithium-ion batteries. Benefiting from the porous morphology provided by their intermolecu... Four types of sustainable sodium carboxylate- derived materials are investigated as novel electrodes with high performance for lithium-ion batteries. Benefiting from the porous morphology provided by their intermolecular in- teractions, increasing capacity, excellent cycle stability and superior rate performance are observed for the sodium car- boxylate-derived materials. The sodium oxalate (SO) electro- des displayed an increasing discharging capacity at a current density of 50 mA g-1 with maximum values of 242.9 mA h g-1 for SO-631 and 373.9 mA h g-1 for SO-541 during the 100th cycle. In addition, the SO-541, SC-541 (sodium citrate), ST- 541 (sodium tartrate) and SP-541 (sodium pyromellitate) electrode materials displayed high initial capacities of 619.6-392.3, 403.7 and 278.1 mA h g-1, respectively, with capacity retentions of 179%, 148%, 173% and 108%, respectively, after 200 cycles at 50 mA g-1. Even at a high current density of 2,000 mA g-1, the capacities remain 157.6, 131.3, 146.6 and 137.0mAhg-1, respectively. With these superior electro- chemical properties, the sodium carboxylate-derived materials could be considered as promising organic electrode materials for large-scale sustainable lithium-ion batteries. 展开更多
关键词 sodium carboxylate lithium-ion batteries organicelectrode electrochemical performance green and sustainable
原文传递
Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes 被引量:9
6
作者 Kun-Qi Geng Meng-Qian Yang +6 位作者 Jun-Xia Meng Ling-Fei Zhou Yu-Qin Wang Sydorov Dmytro Qian Zhang Sheng-Wen Zhong Quan-Xin Ma 《Tungsten》 EI 2022年第4期323-335,共13页
Li-rich layered oxide(LLO),e.g.,Li_(1.12)[Mn_(0.56)Ni_(0.16)Co_(0.08)]O_(2)(LRMO),is considered as a promising cathode material due to its superior Li-storage capability.However,the poor cycling stability and large vo... Li-rich layered oxide(LLO),e.g.,Li_(1.12)[Mn_(0.56)Ni_(0.16)Co_(0.08)]O_(2)(LRMO),is considered as a promising cathode material due to its superior Li-storage capability.However,the poor cycling stability and large voltage decay,which are related to the phase transition,limit its industrialization process.Herein,a Mo-doped LRMO(Li_(1.12)[Mn_(0.56)Ni_(0.16)Co_(0.08)]_(0.98)Mo_(0.02)O_(2),LRMO-Mo2.0%)was successfully synthesized via a simple combination of co-precipitation with high-temperature calcination for solving the mentioned above-disadvantages.Compared with the pristine counterpart,the as-prepared LRMO-Mo2.0%shows more excellent electrochemical performance in terms of rate capability(reversible capacity of 118 mA·h·g^(−1) at 5 C),cyclic ability(94.3%capacity retention after 100 cycles at 0.2 C)and discharge midpoint voltage decay(0.11 V after 100 cycles).Systematic investigation of structural evolution and electrochemical kinetics elucidate that the synergic effect of robust oxygen framework and layered/spinel heterostructure is the key to its performance improvement.Such synergy helps to stabilize the layered structure by curbing the structural transformation and oxygen escaping during the electrochemical cycling.This work paved the way for the simple and efficient preparation of highly stable LLO cathode materials. 展开更多
关键词 Li-rich layered oxide Mo doping Layered/spinel heterostructure High rate performance Cycling stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部