Even as gigahertz(GHz) acoustic streaming has developed into a multi-functional platform technology for biochemical applications, including ultrafast microfluidic mixing, microparticle operations, and cellar or vesicl...Even as gigahertz(GHz) acoustic streaming has developed into a multi-functional platform technology for biochemical applications, including ultrafast microfluidic mixing, microparticle operations, and cellar or vesicle surgery, its theoretical principles have yet to be established. This is because few studies have been conducted on the use of such high frequency acoustics in microscale fluids. Another difficulty is the lack of velocimetry methods for microscale and nanoscale fluidic streaming. In this work, we focus on the basic aspects of GHz acoustic streaming,including its micro-vortex generation principles, theoretical model, and experimental characterization technologies. We present details of a weak-coupled finite simulation that represents our current understanding of the GHz-acoustic-streaming phenomenon. Both our simulation and experimental results show that the GHzacoustic-induced interfacial body force plays a determinative role in vortex generation. We carefully studied changes in the formation of GHz acoustic streaming at different acoustic powers and flow rates. In particular,we developed a microfluidic-particle-image velocimetry method that enables the quantification of streaming at the microscale and even nanoscale. This work provides a full map of GHz acoustofluidics and highlights the way to further theoretical study of this topic.展开更多
Dual-comb spectrometry suffers the fluctuations of parameters in combs. We demonstrate that the repetition rate is more important than any other parameter, since the fluctuation of the repetition rate leads to a chang...Dual-comb spectrometry suffers the fluctuations of parameters in combs. We demonstrate that the repetition rate is more important than any other parameter, since the fluctuation of the repetition rate leads to a change of difference in the repetition rate between both combs, consequently causing the conversion factor variation and spectral frequency misalignment. The measured frequency noise power spectral density of the repetition rate exhibits an integrated residual frequency modulation of 1.4 Hz from 1 Hz to 100 kHz in our system. This value corresponds to the absorption peak fluctuation within a root mean square value of 0.19 cm-1 that is verified by both simulation and experimental result. Further, we can also simulate spectrum degradation as the fluctuation varies. After modifying misaligned sPectra and averaging, the measured result agrees well with the simulated spectrum based on the GEISA database.展开更多
To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in deter...To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.展开更多
Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' pote...Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' potential in the field of tribology and their application in ultra-charge/discharge devices. In this paper, a novel surface-enhanced Raman scattering technique that involves coating the sample with nanoscopic gold particles is proposed to characterize the NDs after different annealing treatments. Conventional Raman and surfaceenhanced Raman spectra were obtained, and the changes of peak parameters as the function of annealing temperature were evaluated. It was found that the widths of the D and the G peaks decreased with increasing annealing temperature, reflecting an improved order in the sp^2-hybridized carbon during the transformation from NDs to carbon onions. After annealing at 1700 ℃, the sp^2?carbon was highly ordered, indicating desirable electrical conductivity and lubricity. With increasing annealing temperature, the D peak showed a blue shift of almost30 cm^(-1), while the G peak merely shifted by 5 cm^(-1). For annealing temperatures above 1100 ℃, an increase of intensity ratio ID/IGwas observed. Compared to the uncoated area, red shifts of 0.5-2 cm^(-1) and of 5-9 cm^(-1) for the G and D peaks, respectively, were detected for the gold-coated area, which was due to the coupling of the plasmons and the phonons of the samples.展开更多
An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and ...An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.展开更多
To break through the limitations of existing pressure standards, which rely on the gravity and toxic mercury,the national metrological institutes prefer a quantum-based pressure standard. Combining the ideal gas law w...To break through the limitations of existing pressure standards, which rely on the gravity and toxic mercury,the national metrological institutes prefer a quantum-based pressure standard. Combining the ideal gas law with helium refractivity measurement, we demonstrate a scheme for the realization of the pressure unit. The refractometer is based on a spectral interferometry with an optical frequency comb and a double-spaced vacuum cell. Through fast Fourier transform of the spectral interferograms of the two beams propagating inside and outside the vacuum cell, the helium refractivity can be obtained with a combined standard uncertainty u(n) of2.9 × 10-9. Moreover, the final u(n) is -8.7 × 10-6 in a measurement range of several megapascals(MPa). Our apparatus is compact, fast(15 ms for one single measurement) and easy to handle. Furthermore, the measurement uncertainty will be improved to-1 × 10-9 or lower if a VIPA-based spectrometer is used. The value of u(p) will thus increase to 3 × 10-6 or better in several MPa.展开更多
Three-dimensional molecular dynamics(MD)simulation was carried out to understand the mechanism of water lubrication in nanometric cutting.The water-lubricated cutting was compared with the dry cutting process in terms...Three-dimensional molecular dynamics(MD)simulation was carried out to understand the mechanism of water lubrication in nanometric cutting.The water-lubricated cutting was compared with the dry cutting process in terms of lattice deformation,cutting force,heat and pressure distribution,and machined surface integrity.It was found that water molecules effectively reduce the friction between the tool and workpiece,the heat in the cutting zone and the pressure being generated on the tool surface,thus leading to prolonged tool life.Water molecules also enlarged the pressure-affected area,which decreased the roughness of the machined surface.展开更多
The manufacturing of bioimplants not only involves selecting proper biomaterials with satisfactory bulk physicochemical properties, but also requires special treatments on surface chemistry or topography to direct a d...The manufacturing of bioimplants not only involves selecting proper biomaterials with satisfactory bulk physicochemical properties, but also requires special treatments on surface chemistry or topography to direct a desired host response. The lifespan of a bioimplant is also critically restricted by its surface properties. Therefore, developing proper surface treatment technologies has become one of the research focuses in biomedical engineering. This paper covers the recent progress of surface treatment of bioimplants from the aspects of coating and topography modification. Pros and cons of various tech- nologies are discussed with the aim of providing the most suitable method to be applied for different biomedical products. Relevant techniques to evaluate wear, corrosion and other surface properties are also reviewed.展开更多
Micro gas chromatography(μGC) has been continuously gaining attention since the last century owing to multiple favorable characteristics, such as its small size, low power consumption and minimal production and maint...Micro gas chromatography(μGC) has been continuously gaining attention since the last century owing to multiple favorable characteristics, such as its small size, low power consumption and minimal production and maintenance costs.μGC has the potential to provide practical solutions to emerging analytical challenges in security, health,and environment. In this review, we summarize recent advances in micro detectors for μGC, including the study of the miniaturization of conventional detectors and the development of novel detectors for μGC chromatography.展开更多
Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical ...Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.展开更多
基金financial support from the National Natural Science Foundation of China (Grant Nos. 91743110, 61674114, 21861132001)National Key R&D Program of China (Grant No. 2017YFF0204600)+2 种基金Tianjin Applied Basic Research and Advanced Technology (Grant No. 17JCJQJC43600)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin Universitythe 111 Project (Grant No. B07014)
文摘Even as gigahertz(GHz) acoustic streaming has developed into a multi-functional platform technology for biochemical applications, including ultrafast microfluidic mixing, microparticle operations, and cellar or vesicle surgery, its theoretical principles have yet to be established. This is because few studies have been conducted on the use of such high frequency acoustics in microscale fluids. Another difficulty is the lack of velocimetry methods for microscale and nanoscale fluidic streaming. In this work, we focus on the basic aspects of GHz acoustic streaming,including its micro-vortex generation principles, theoretical model, and experimental characterization technologies. We present details of a weak-coupled finite simulation that represents our current understanding of the GHz-acoustic-streaming phenomenon. Both our simulation and experimental results show that the GHzacoustic-induced interfacial body force plays a determinative role in vortex generation. We carefully studied changes in the formation of GHz acoustic streaming at different acoustic powers and flow rates. In particular,we developed a microfluidic-particle-image velocimetry method that enables the quantification of streaming at the microscale and even nanoscale. This work provides a full map of GHz acoustofluidics and highlights the way to further theoretical study of this topic.
基金supported by the State Key Laboratory of Precision Measurement Technology & Instruments of Tsinghua University and the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205147)
文摘Dual-comb spectrometry suffers the fluctuations of parameters in combs. We demonstrate that the repetition rate is more important than any other parameter, since the fluctuation of the repetition rate leads to a change of difference in the repetition rate between both combs, consequently causing the conversion factor variation and spectral frequency misalignment. The measured frequency noise power spectral density of the repetition rate exhibits an integrated residual frequency modulation of 1.4 Hz from 1 Hz to 100 kHz in our system. This value corresponds to the absorption peak fluctuation within a root mean square value of 0.19 cm-1 that is verified by both simulation and experimental result. Further, we can also simulate spectrum degradation as the fluctuation varies. After modifying misaligned sPectra and averaging, the measured result agrees well with the simulated spectrum based on the GEISA database.
基金Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2006BAF06B06)Tsinghua University Initiative Scientific Research Program,China (Grant No.2009THZ06057)
文摘To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.
基金supported by National Natural Science Foundation of China (No. 51575389, 51761135106, 51511130074)National Key Research and Development Program of China (2016YFB1102203)State key laboratory of precision measuring technology and instruments (Pilt1705)
文摘Annealing nanodiamonds(ND) at high temperatures up to 1700 ℃ is a common method to synthesize carbon onions. The transformation from NDs to carbon onions is particularly interesting because of carbon onions' potential in the field of tribology and their application in ultra-charge/discharge devices. In this paper, a novel surface-enhanced Raman scattering technique that involves coating the sample with nanoscopic gold particles is proposed to characterize the NDs after different annealing treatments. Conventional Raman and surfaceenhanced Raman spectra were obtained, and the changes of peak parameters as the function of annealing temperature were evaluated. It was found that the widths of the D and the G peaks decreased with increasing annealing temperature, reflecting an improved order in the sp^2-hybridized carbon during the transformation from NDs to carbon onions. After annealing at 1700 ℃, the sp^2?carbon was highly ordered, indicating desirable electrical conductivity and lubricity. With increasing annealing temperature, the D peak showed a blue shift of almost30 cm^(-1), while the G peak merely shifted by 5 cm^(-1). For annealing temperatures above 1100 ℃, an increase of intensity ratio ID/IGwas observed. Compared to the uncoated area, red shifts of 0.5-2 cm^(-1) and of 5-9 cm^(-1) for the G and D peaks, respectively, were detected for the gold-coated area, which was due to the coupling of the plasmons and the phonons of the samples.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50205006)
文摘An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.
基金Supported by the National Key R&D Program of China under Grant No 2018YFF0212300the National Natural Science Foundation of China under Grant No 51575311
文摘To break through the limitations of existing pressure standards, which rely on the gravity and toxic mercury,the national metrological institutes prefer a quantum-based pressure standard. Combining the ideal gas law with helium refractivity measurement, we demonstrate a scheme for the realization of the pressure unit. The refractometer is based on a spectral interferometry with an optical frequency comb and a double-spaced vacuum cell. Through fast Fourier transform of the spectral interferograms of the two beams propagating inside and outside the vacuum cell, the helium refractivity can be obtained with a combined standard uncertainty u(n) of2.9 × 10-9. Moreover, the final u(n) is -8.7 × 10-6 in a measurement range of several megapascals(MPa). Our apparatus is compact, fast(15 ms for one single measurement) and easy to handle. Furthermore, the measurement uncertainty will be improved to-1 × 10-9 or lower if a VIPA-based spectrometer is used. The value of u(p) will thus increase to 3 × 10-6 or better in several MPa.
基金supported by the National Natural Science Foundation of China (Grant No. 90923038)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB706703)the "111" project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014)
文摘Three-dimensional molecular dynamics(MD)simulation was carried out to understand the mechanism of water lubrication in nanometric cutting.The water-lubricated cutting was compared with the dry cutting process in terms of lattice deformation,cutting force,heat and pressure distribution,and machined surface integrity.It was found that water molecules effectively reduce the friction between the tool and workpiece,the heat in the cutting zone and the pressure being generated on the tool surface,thus leading to prolonged tool life.Water molecules also enlarged the pressure-affected area,which decreased the roughness of the machined surface.
文摘The manufacturing of bioimplants not only involves selecting proper biomaterials with satisfactory bulk physicochemical properties, but also requires special treatments on surface chemistry or topography to direct a desired host response. The lifespan of a bioimplant is also critically restricted by its surface properties. Therefore, developing proper surface treatment technologies has become one of the research focuses in biomedical engineering. This paper covers the recent progress of surface treatment of bioimplants from the aspects of coating and topography modification. Pros and cons of various tech- nologies are discussed with the aim of providing the most suitable method to be applied for different biomedical products. Relevant techniques to evaluate wear, corrosion and other surface properties are also reviewed.
基金the financial support from the National Natural Science Foundation of China (61674114, 91743110 and 21861132001)the National Key R&D Program of China (2017YFF0204600)+2 种基金Tianjin Applied Basic Research and Advanced Technology (17JCJQJC43600)the Foundation for Talent Scientists of Nanchang Institute for Micro-technology of Tianjin Universitythe 111 Project (B07014 and B12015)
文摘Micro gas chromatography(μGC) has been continuously gaining attention since the last century owing to multiple favorable characteristics, such as its small size, low power consumption and minimal production and maintenance costs.μGC has the potential to provide practical solutions to emerging analytical challenges in security, health,and environment. In this review, we summarize recent advances in micro detectors for μGC, including the study of the miniaturization of conventional detectors and the development of novel detectors for μGC chromatography.
文摘Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.