The growing variety of RNA classes,such as mRNAs,lncRNAs,and circRNAs,plays pivotal roles in both developmental processes and various pathophysiological conditions.Nonetheless,our comprehension of RNA functions in liv...The growing variety of RNA classes,such as mRNAs,lncRNAs,and circRNAs,plays pivotal roles in both developmental processes and various pathophysiological conditions.Nonetheless,our comprehension of RNA functions in live organisms remains limited due to the absence of durable and effective strategies for directly influencing RNA levels.In this study,we combined the CRISPR-RfxCas13d system with spermlike stem cell-mediated semi-cloning techniques,which enabled the suppressed expression of different RNA species.This approach was employed to interfere with the expression of three types of RNA molecules:Sfmbt2 mRNA,Fendrr lncRNA,and circMan1a2(2,3,4,5,6).The results confirmed the critical roles of these RNAs in embryonic development,as their loss led to observable phenotypes,including embryonic lethality,delayed embryonic development,and embryo resorption.In summary,our methodology offers a potent toolkit for silencing specific RNA targets in living organisms without introducing genetic alterations.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(XDB0570000)the CAS Project for Young Scientists in Basic Research(YSBR-009)+3 种基金the National Key Research and Development Program of China(2021YFA1100203,2020YFA0509000)the National Natural Science Foundation of China(31821004,32030029,32293230)Shanghai Municipal Science and Technology Major Project(23HC1401000,22YS1400900)support from the Xplorer Prize and New Cornerstone Science Foundation(NCI202232).
文摘The growing variety of RNA classes,such as mRNAs,lncRNAs,and circRNAs,plays pivotal roles in both developmental processes and various pathophysiological conditions.Nonetheless,our comprehension of RNA functions in live organisms remains limited due to the absence of durable and effective strategies for directly influencing RNA levels.In this study,we combined the CRISPR-RfxCas13d system with spermlike stem cell-mediated semi-cloning techniques,which enabled the suppressed expression of different RNA species.This approach was employed to interfere with the expression of three types of RNA molecules:Sfmbt2 mRNA,Fendrr lncRNA,and circMan1a2(2,3,4,5,6).The results confirmed the critical roles of these RNAs in embryonic development,as their loss led to observable phenotypes,including embryonic lethality,delayed embryonic development,and embryo resorption.In summary,our methodology offers a potent toolkit for silencing specific RNA targets in living organisms without introducing genetic alterations.