A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEM) images indicate that ...A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEM) images indicate that the particles are spherical in shape and smaller than 100 nm in size. The crystallite sizes of cubic Ln2O3 have lanthanide shrinking effect, while average crystal lattice distortion rates possess lanthanide swelling effect. The diffraction peak intensity of heavy rare earth oxide nanometer powders is remarkably stronger than that of light rare earth oxide nanometer powders. The variation of diffraction intensity with atomic number presents an inverted W type, forming a double peak structure. Fourier transform infrared (FTIR) spectrums reveal that Ln2O3 nanopowders have higher surface activity than that of ordinary Ln2O3 powders. The UV-vis spectra show that Ln-O bond of these particles is slightly blue-shifted, and its absorption intensity decreases.展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The m...The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.展开更多
A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite...A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively.展开更多
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-stat...The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.展开更多
The triplet state energies of para aminobenzoic acid and nicotinic acid were determined by means of low temperature phosphorescence spectrometry. The energy matches between them and the resonant emitting energy l...The triplet state energies of para aminobenzoic acid and nicotinic acid were determined by means of low temperature phosphorescence spectrometry. The energy matches between them and the resonant emitting energy levels of Eu 3+ , Tb 3+ , Sm 3+ , Dy 3+ were studied. The intramolecular energy transfer processes from the two aromatic carboxylic acid ligands to rare earth ions were also discussed on the basis of the measurement results of luminescence intensities, lifetimes and quantum efficiencies.展开更多
A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASI...A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.展开更多
The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperat...The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.展开更多
The coprecipitate Tb 0.5 Eu 0.5 3phen was synthesized. By doping the rare earth complex into polymer PVK, the EL device was fabricated with the structure of ITO/PVK∶RE/PBD/Al. Compared with the device using...The coprecipitate Tb 0.5 Eu 0.5 3phen was synthesized. By doping the rare earth complex into polymer PVK, the EL device was fabricated with the structure of ITO/PVK∶RE/PBD/Al. Compared with the device using PVK/Eu(asprin) 3phen blend as the light emitting layer, the emission of Eu 3+ in the PVK/Tb 0.5 Eu 0.5 (asprin) 3 phen blend is greatly enhanced along with the quenching of the emission of PVK.展开更多
The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device use...The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device used Tb x Eu 1- x (BSA) 3phen as the emission material with the different ratio of x were discussed. When x is 0.5, the device emits pure red color with the maximal brightness of 100 cd·m -2 and has good commutation property. The role of the Tb 3+ ion in the energy transfer process between the ligand and the Eu 3+ ion and the mechanism of energy transfer process were also discussed.展开更多
The electrorheological(ER)behaviors of 31 kinds of ER suspensions,16 kinds of rare earth oxide and 15 kinds of rare earth hydroxide[RE(OH)_(3)]are tested systematically under electric field.The microscopy shows that o...The electrorheological(ER)behaviors of 31 kinds of ER suspensions,16 kinds of rare earth oxide and 15 kinds of rare earth hydroxide[RE(OH)_(3)]are tested systematically under electric field.The microscopy shows that only Gd_(2)O_(3),Pr6O11 from rare earth oxides and RE(OH)_(3)·nH_(2)O(RE=La,Y,Pr,Gd,Sm,Lu)from rare earth hydroxides dispersed in silicone oil produce fibrous chains in the direction of the ac field vector.The viscosities of ER suspensions with Gd_(2)O_(3),Pr_(6)O_(11),RE(OH)_(3)·nH_(2)O(RE=La,Y,Gd,Pr)dispersed in hydrocarbon oil are determined under different field strength(dc field).The results show that the ER activity of the materials is not influenced by the coordinated water with the rare earth ion,and it is related with the microstructure of the molecule.展开更多
This project is set in one of the international frontier research fields in inorganic solid chemistry.At present, the research in organic/inorganic hybrid materials and nanocomposite optoelectronic functional material...This project is set in one of the international frontier research fields in inorganic solid chemistry.At present, the research in organic/inorganic hybrid materials and nanocomposite optoelectronic functional materials is under the spotlight in the realm of materials science; there remain quite a few difficulties hiding in the traditional synthesis methods.For instance, the reaction cycle is generally too long, rare earth luminescence components are covalently grafted onto the matrix network, and the stability and luminescence properties are quite poor.Hence, Prof.Zhang and his colleagues proposed a series of new methods and technologies through systematic studies to prepare organic/inorganic hybrid materials and nanocomposite optoelectronic functional materials, striving to solve those kinds of problems.Through many years' efforts, a scientific basis was established by the scientists for the design and performance of the materials, which is recognized of great practical significance.展开更多
A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated...A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated resin(SIR) was studied for rare earth(RE) separation.Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100].Adsorption kinetics,adsorption isotherm,separation and desorption of the SIR were also stu...展开更多
In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the...In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the important obstacle to further application in clinic.Herein,we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin(FeO/MoS2-BSA)with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared(NIR II)light.In the tumor microenvironments,the MoS2 nanosheets not only can accelerate the conversion of Fe3+ions to Fe2+ions by Mo4+ions on their surface to improve Fenton reaction efficiency,but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy(PTT).Consequently,benefiting from the synergetic-enhanced CDT/PTT,the tumors are eradicated completely in vivo.This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.展开更多
Solid-state white LED will be a new generation of energy-saving light source in 21 century. In order to emitting white light, one of important approaches is using luminescence conversion technology with rare earth pho...Solid-state white LED will be a new generation of energy-saving light source in 21 century. In order to emitting white light, one of important approaches is using luminescence conversion technology with rare earth phosphors, which can be excited by the 460 nm blue light or 400 nm near violet light emitted from the InGaN chip and then emit white light. The rare earths doped phosphors prepared by us such as YAG : Ce^3+, Ca1-xSrxS : Eu^2+, Ga2S3 : Eu^2+, MGa2S4:Eu^2+ (M = Ca, Sr, Ba), SrGa2+xS4+y :Eu^2+,(Ca1 - xSrx ) Se : Eu^2 + , SrLaGaaS6O : Eu^2 + , ( M1, M2 ) 10 (PO4)6XE(M1 = Ca, Sr, Ba; Ms = Eu, Mn; X = F, Cl, Br) and NaEu0.92 Sm0.08 (MoO4)5 were reported. They emit blue, green, yellow or red color light. Some white LEDs were made by these phosphors with blue or near violet InGaN chips and their chromaticity coordinate (x, y), correlated color temperature Tc, and color rendering index Ra are reported.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
Fluorescence interferometry is developed and applied to study ultrafast amplitude and phase dynamics for fleeinduction decay in powdered rare earth solids. The time-resolved phase dynamics of free-induction decay thro...Fluorescence interferometry is developed and applied to study ultrafast amplitude and phase dynamics for fleeinduction decay in powdered rare earth solids. The time-resolved phase dynamics of free-induction decay throughout the decaying process is accurately determined by using a novel dual-channel correlation technique and subpicosecond dephasing time is measured for Nd3+ solids at room temperature. The phase dynamics is well simulated with linear coherent polarization theory.展开更多
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b...Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.展开更多
The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O...The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.展开更多
KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele...KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.展开更多
文摘A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEM) images indicate that the particles are spherical in shape and smaller than 100 nm in size. The crystallite sizes of cubic Ln2O3 have lanthanide shrinking effect, while average crystal lattice distortion rates possess lanthanide swelling effect. The diffraction peak intensity of heavy rare earth oxide nanometer powders is remarkably stronger than that of light rare earth oxide nanometer powders. The variation of diffraction intensity with atomic number presents an inverted W type, forming a double peak structure. Fourier transform infrared (FTIR) spectrums reveal that Ln2O3 nanopowders have higher surface activity than that of ordinary Ln2O3 powders. The UV-vis spectra show that Ln-O bond of these particles is slightly blue-shifted, and its absorption intensity decreases.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
文摘The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.
文摘A series of solid electrolytes, (Ce 0.8 Ln 0.2 ) 1- x M x O 2-δ (Ln= La, Nd, Sm, Gd, M:Alkali earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 ℃. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria based solid electrolyte is improved. The effects of rare earth and alkali earth ions on the electricity were discussed. The open circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce 0.8 Sm 0.2 ) 1-0.05 Ca 0.05 O 2- δ as electrolyte are 0.86 V and 33 mW·cm -2 , respectively.
文摘The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
文摘The triplet state energies of para aminobenzoic acid and nicotinic acid were determined by means of low temperature phosphorescence spectrometry. The energy matches between them and the resonant emitting energy levels of Eu 3+ , Tb 3+ , Sm 3+ , Dy 3+ were studied. The intramolecular energy transfer processes from the two aromatic carboxylic acid ligands to rare earth ions were also discussed on the basis of the measurement results of luminescence intensities, lifetimes and quantum efficiencies.
文摘A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.
文摘The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.
文摘The coprecipitate Tb 0.5 Eu 0.5 3phen was synthesized. By doping the rare earth complex into polymer PVK, the EL device was fabricated with the structure of ITO/PVK∶RE/PBD/Al. Compared with the device using PVK/Eu(asprin) 3phen blend as the light emitting layer, the emission of Eu 3+ in the PVK/Tb 0.5 Eu 0.5 (asprin) 3 phen blend is greatly enhanced along with the quenching of the emission of PVK.
文摘The Tb 3+ ion was introduced in the Tb x Eu 1- x (BSA) 3phen as a bridge to make the energy transfer process from ligand to the Eu 3+ complex more efficient. The characteristics of the device used Tb x Eu 1- x (BSA) 3phen as the emission material with the different ratio of x were discussed. When x is 0.5, the device emits pure red color with the maximal brightness of 100 cd·m -2 and has good commutation property. The role of the Tb 3+ ion in the energy transfer process between the ligand and the Eu 3+ ion and the mechanism of energy transfer process were also discussed.
基金Supported by Rare Earth Materials Chemistry and Applications Foundation of State Key Laboratory of Peking University。
文摘The electrorheological(ER)behaviors of 31 kinds of ER suspensions,16 kinds of rare earth oxide and 15 kinds of rare earth hydroxide[RE(OH)_(3)]are tested systematically under electric field.The microscopy shows that only Gd_(2)O_(3),Pr6O11 from rare earth oxides and RE(OH)_(3)·nH_(2)O(RE=La,Y,Pr,Gd,Sm,Lu)from rare earth hydroxides dispersed in silicone oil produce fibrous chains in the direction of the ac field vector.The viscosities of ER suspensions with Gd_(2)O_(3),Pr_(6)O_(11),RE(OH)_(3)·nH_(2)O(RE=La,Y,Gd,Pr)dispersed in hydrocarbon oil are determined under different field strength(dc field).The results show that the ER activity of the materials is not influenced by the coordinated water with the rare earth ion,and it is related with the microstructure of the molecule.
文摘This project is set in one of the international frontier research fields in inorganic solid chemistry.At present, the research in organic/inorganic hybrid materials and nanocomposite optoelectronic functional materials is under the spotlight in the realm of materials science; there remain quite a few difficulties hiding in the traditional synthesis methods.For instance, the reaction cycle is generally too long, rare earth luminescence components are covalently grafted onto the matrix network, and the stability and luminescence properties are quite poor.Hence, Prof.Zhang and his colleagues proposed a series of new methods and technologies through systematic studies to prepare organic/inorganic hybrid materials and nanocomposite optoelectronic functional materials, striving to solve those kinds of problems.Through many years' efforts, a scientific basis was established by the scientists for the design and performance of the materials, which is recognized of great practical significance.
基金supported by ‘Hundreds Talents Program’from Chinese Academy of Sciences, National Natural Science Foundation of China (50574080, 20901073)National Key Technology R&D Program of China (2006BAC02A10)Distinguished Young Scholar Foundation of Jilin Province (20060114)
文摘A novel bifunctional task-specific ionic liquid(TSIL),i.e.[trialkylmethylammonium][sec-nonylphenoxy acetate]([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin,and the prepared solvent impreganated resin(SIR) was studied for rare earth(RE) separation.Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100].Adsorption kinetics,adsorption isotherm,separation and desorption of the SIR were also stu...
基金This work was supported by the financial aid from the National Natural Science Foundation of China(Grant Nos.51502284,21834007,21521092,21590794,and 21673220)the Program of Science and Technology Development Plan of Jilin Province of China(No.20170101186JC)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20030300)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019232).
文摘In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the important obstacle to further application in clinic.Herein,we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin(FeO/MoS2-BSA)with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared(NIR II)light.In the tumor microenvironments,the MoS2 nanosheets not only can accelerate the conversion of Fe3+ions to Fe2+ions by Mo4+ions on their surface to improve Fenton reaction efficiency,but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy(PTT).Consequently,benefiting from the synergetic-enhanced CDT/PTT,the tumors are eradicated completely in vivo.This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.
文摘Solid-state white LED will be a new generation of energy-saving light source in 21 century. In order to emitting white light, one of important approaches is using luminescence conversion technology with rare earth phosphors, which can be excited by the 460 nm blue light or 400 nm near violet light emitted from the InGaN chip and then emit white light. The rare earths doped phosphors prepared by us such as YAG : Ce^3+, Ca1-xSrxS : Eu^2+, Ga2S3 : Eu^2+, MGa2S4:Eu^2+ (M = Ca, Sr, Ba), SrGa2+xS4+y :Eu^2+,(Ca1 - xSrx ) Se : Eu^2 + , SrLaGaaS6O : Eu^2 + , ( M1, M2 ) 10 (PO4)6XE(M1 = Ca, Sr, Ba; Ms = Eu, Mn; X = F, Cl, Br) and NaEu0.92 Sm0.08 (MoO4)5 were reported. They emit blue, green, yellow or red color light. Some white LEDs were made by these phosphors with blue or near violet InGaN chips and their chromaticity coordinate (x, y), correlated color temperature Tc, and color rendering index Ra are reported.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金Supported by the National Natural Science Foundation of China under Grant No.29673058Ministry of Education under GrantNo.97055803and Natural Science Foundation of Guangdong under Grant No.970146.
文摘Fluorescence interferometry is developed and applied to study ultrafast amplitude and phase dynamics for fleeinduction decay in powdered rare earth solids. The time-resolved phase dynamics of free-induction decay throughout the decaying process is accurately determined by using a novel dual-channel correlation technique and subpicosecond dephasing time is measured for Nd3+ solids at room temperature. The phase dynamics is well simulated with linear coherent polarization theory.
基金financially supported by the Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS185)the National Natural Science Foundation of China(21975250)。
文摘Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(No.2022A1515011832 and 2021A1515110676)supported by GDAS’Project of Science and Technology Development(2022GDASZH-2022010104,2022GDASZH-2022030604-04).
文摘The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.
基金support from the National Key R&D Program of China(Grant No.2023YFE0202000)National Natural Science Foundation of China(Grant No.52102213)Science Technology Program of Jilin Province(Grant No.20230101128JC).
文摘KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.