期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical study of failure behavior and mechanism of coal under dynamic compressive loads 被引量:13
1
作者 Junjun Feng Enyuan Wang +2 位作者 Qisong Huang Houcheng Ding Xiangyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期613-621,共9页
A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial d... A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space. 展开更多
关键词 Split Hopkinson pressure bar Stress wave Failure mode Fracture mechanism FRACTOGRAPHY
下载PDF
Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam 被引量:3
2
作者 Liu Jian Liu Zegong +2 位作者 Xue Junhua Gao Kui Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期755-760,共6页
In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas... In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable. 展开更多
关键词 深孔爆破 特厚煤层 综放工作面 瓦斯抽放 预裂 应用 特厚坚硬煤层 瓦斯预抽
下载PDF
On the excavation-induced stress drop in damaged coal considering a coupled yield and failure criterion 被引量:1
3
作者 Dongjie Xue Jie Zhou +1 位作者 Yintong Liu Lie Gao 《International Journal of Coal Science & Technology》 EI 2020年第1期58-67,共10页
Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are ca... Investigating the stress drop of abutment pressure is the key to a deep quantitative analysis of the discontinuous stress redistribution under mining.In the present study,uniaxial and triaxial compression tests are carried out separately to determine the bulk and shear moduli,the cohesion,and the internal friction angle of the coal samples.By extending the meaning of Mohr’s circle referring to yield stress instead of the maximum principal stress,a yield line is introduced to illustrate the stress drop of Mohr’s circle referring to yield stress instead of the maximum principal stress at the elastoplastic boundary.Furthermore,a theoretical solution of the stress drop as a function of the damage is proposed to investigate how the abutment pressure differs considering the yield line and failure line.In addition,applying the stress drop at the yield line in non-pillar mining,top coal mining,and protective coal mining shows that the damage has a nonlinearly positive influence on the stress drop.The results shows that the bulk modulus and internal friction angle have a more sensitive influence on the stress drop than do the shear modulus and cohesion.Finally,the stress drop is divided into a discontinuous stress drop at the yield line and a structural stress drop at the failure line.The stress drop is effective in describing the discontinuous stress redistribution and shows a clear difference in the movement direction of Mohr’s circle considering the unloading pressure. 展开更多
关键词 Stress drop Abutment pressure Mohr's circle Yield line Failure line
下载PDF
Anisotropy of crack initiation strength and damage strength of coal reservoirs
4
作者 HAO Xianjie WEI Yingnan +6 位作者 YANG Ke SU Jian SUN Yingfeng ZHU Guangpei WANG Shaohua CHEN Haibo SUN Zhuowen 《Petroleum Exploration and Development》 CSCD 2021年第1期243-255,共13页
The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The resu... The crack volume strain method and acoustic emission(AE)method are used to analyze the anisotropy of the crack initiation strength,damage strength,the failure mode and the AE characteristics of coal reservoir.The results show that coal reservoirs show obvious anisotropic characteristics in compressive strength,cracking initiation strength and damage strength.The compressive strength of coal reservoirs decreases with the increase of bedding angle,but the reservoirs with bedding angles of 450 and 900 differ little in compressive strength.The crack initiation strength and damage strength decrease first and then increase with the increase of bedding angle.The crack initiation strength and damage strength are the highest,at the bedding angle of 0°,moderate at the bedding angle of 90°,and lowest at the bedding angle of 45°.When the bedding angle is 0°,the failure of the coal reservoirs is mainly steady propagation of large-scale fractures.When the bedding angle is 45°,one type of failure is caused by steady propagation of small-scale fractures,and the other type of failure is due to a sudden instability of large-scale fractures.When the bedding angle is 90°,the failure is mainly demonstrated by a sudden-instability of small-scale fractures.Compared with the cumulative count method of the AE,the cumulative energy method is more suitable for determining crack initiation strength and damage strength of coal reservoirs. 展开更多
关键词 coalbed methane coal reservoir crack initiation strength damage strength hydraulic fracturing BEDDING crack volume strain acoustic emission
下载PDF
深部软岩巷道变形破坏机制及联合支护技术(英文) 被引量:16
5
作者 王辉 郑朋强 +1 位作者 赵文娟 田洪铭 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1240-1250,共11页
针对深部软岩巷道围岩长期流变大变形破坏问题,以中国枣泉煤矿运输巷道工程为例,利用现场变形监测和声波测试技术,分析巷道软弱围岩长期变形趋势及破坏范围;利用数值模拟方法,建立能够反映工程地质状况及初始设计方案的三维有限元模型,... 针对深部软岩巷道围岩长期流变大变形破坏问题,以中国枣泉煤矿运输巷道工程为例,利用现场变形监测和声波测试技术,分析巷道软弱围岩长期变形趋势及破坏范围;利用数值模拟方法,建立能够反映工程地质状况及初始设计方案的三维有限元模型,并以现场监测变形数据为基础,反演获取巷道围岩力学参数和流变参数。针对围岩破坏特征,提出"U型钢支架+围岩锚固注浆"联合支护技术,并利用有限元模型对其支护效果进行数值模拟,结合现场监测变形数据分析,验证了支护方法的有效性。 展开更多
关键词 软岩巷道 流变效应 支护技术 数值模拟 加固
下载PDF
Breaking mechanism and control technology of sandstone straight roof in thin bedrock stope 被引量:4
6
作者 Hualei Zhang Min Tu +1 位作者 Hua Cheng Yongzhi Tang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期259-263,共5页
The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer.For this... The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer.For this reason,taking the thin bedrock 1602(3)working face of Huainan(the middle part of Anhui Province)Panyi Coal Mine as the engineering background,this study establishes the stope mining model by using the discrete element UDEC software and the mathematics mechanical model of the support load,and analyzes the reason of support crushing and decides to re-mining the working face by using the compulsive roof caving method.It is concluded that when the working face of sandstone straight roof is broken,the"voussoir beam"structure cannot be formed and acts on the support in the form of cantilever beam,but only when it falls to the high key stratum can the"voussoir beam"structure be formed and at this point,at this time,the bracket bears the weight of the rock layer in the range from the fractured sandstone layer to the lower critical layer.The working resistance of the support increases with the increase of the thickness and the breaking length of straight sandstone roof.When the breaking length of the roof reaches a certain extreme value,the support crushing accidents will occur.Managing roof with compulsive roof caving method can reduce the intensity of rock pressure in the stope,and the working face can be safely stoped,which provides a certain reference for similar conditions. 展开更多
关键词 Thin BEDROCK Key STRATUM COMPULSIVE ROOF CAVING
下载PDF
Similar simulation device for unloading effect of deep roadway excavation and its application 被引量:2
7
作者 DONG Chun-liang ZHAO Guang-ming +3 位作者 LU Xiao-yu MENG Xiang-rui LI Ying-ming CHENG Xiang 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1115-1128,共14页
The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental ... The unloading effect of the excavation of deep roadways has been considerably studied, but most research methods have been limited to numerical simulations and field measurements. Only a few have adopted experimental methods for similar simulations. On the basis of the theory of mechanics,the testing system is designed considering initial geostress and dynamic unloading. The system includes an impact unloading gear and in-situ stress loading equipment, and a designed three-link structure and the impact hammer can effectively realize the dynamic excavation of roadways.Meanwhile, a cyclic excavation similar simulation experiment on a deep roadway is conducted in a laboratory. The testing system and the relevant monitoring facilities are utilized, and the unloading effect inside the surrounding rock under the cyclic dynamic excavation is studied. Results show that the cyclic dynamic excavation causes significant unloading only in the nearby rock mass, and the unloading indicators show nonlinear changes.Moreover, when the lateral pressure coefficient is 1.2,the damage is concentrated on both roadsides due to the excavation unloading. Meanwhile, the damage gradually decays as the span increases. 展开更多
关键词 EXCAVATION UNLOADING in deep roadways UNLOADING effect DAMAGE of SURROUNDING ROCK CIRCULAR EXCAVATION UNLOADING index
下载PDF
Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone 被引量:2
8
作者 Pengfei Wang Xiangyang Zhang 《Fluid Dynamics & Materials Processing》 EI 2022年第2期271-283,共13页
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u... A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship. 展开更多
关键词 Fault zone rock block proportion soil-rock mixture confining pressure loading and unloading seepage characteristic
下载PDF
Cluster modeling of the short-range correlation of acoustically emitted scattering signals
9
作者 Dongjie Xue Lele Lu +2 位作者 Jie Zhou Lan Lu Yintong Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期575-589,共15页
As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike ... As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike the statistical description of the spatial distribution of randomly generated AE signals,spatial correlation modeling is based mainly on short-range correlation considering the interrelationship of adjacent signals.As a new idea from percolation models,the covering strategy is used to build the most representative cube cluster,which corresponds to the critical scale at peak stress.Its modeling process of critical cube cluster depends strongly on the full connection of the main fracture network,and the corresponding cube for coverage is termed the critical cube.The criticality pertains to not only the transition of local-to-whole connection of the fracture network but also the increasing-to-decreasing transition of the deviatoric stress with an obvious stress drop in the brittle failure of granite.Determining a reasonable critical cube guarantees the best observation scale for investigating the failure process.Besides,the topological connection induces the geometric criticality of three descriptors,namely anisotropy,pore fraction,and specific surface area,which are evaluated separately and effectively.The results show that cluster modeling based on the critical cube is effective and has criticality in both topology and geometry,as well as the triaxial behavior.Furthermore,the critical cube length presents a high confidence probability of being correlated to the mineral particle size.Besides,its pore fraction of cube cluster is influenced strongly by the critical cube length and confining pressure. 展开更多
关键词 Acoustic emission Spatial correlation modeling Cover strategy CRITICALITY Critical cube Cluster modeling
下载PDF
Prediction of fracture and dilatancy in granite using acoustic emission signal cloud
10
作者 Dongjie Xue Lan Lu +2 位作者 Lie Gao Lele Lu Cheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1059-1077,共19页
The invisibility of fracture network evolution in the rock under triaxial compression seriously restricts the correlation modeling between dilatancy behavior and fracture interconnectivity.The key to solving such a ch... The invisibility of fracture network evolution in the rock under triaxial compression seriously restricts the correlation modeling between dilatancy behavior and fracture interconnectivity.The key to solving such a challenge is strongly dependent on the accurate modeling of the spatial correlation in fracture network,which could be indirectly re-constructed by the acoustic emission(AE)signal cloud.Considering the interaction of local fractures,a cube cluster approach is established to describe the spatial correlation.The evolutional cube clusters effectively present the geometric characteristics induced by the increasing dilatancy of fracture.Two descriptors(i.e.three-axis length sum and pore fraction)are introduced to correlate cluster model with dilatancy behavior.Most fitting results support the linear correlation between two descriptors and volumetric strain,which verifies the sensitiveness of the cube cluster model to dilatancy.More importantly,by the statistical analysis of cluster structure,the cluster model shows the potential of calculating fracture angle.Moreover,a comparison between dilatancybased damage and porosity-based damage is made not to prove the best but provide an AE-based prediction of local damage evolution.Finally,four classical models for calculating fracture angle are compared.The deviations prove the huge difficulty of describing the development of the fracture network uniquely dependent on a fracture angle.The proximity of measured angle and cluster-based angle supports the effectiveness of predication by the cube cluster approach. 展开更多
关键词 Fracture network Acoustic emission(AE) Spatial correlation DILATANCY DAMAGE Fracture angle
下载PDF
A Review of Research on Catastrophic Formation and Evolutionary Mechanism of Deep High Stress Rock Mass under Impact Loading
11
作者 Xinfeng Wang Wenbo Luo Yipeng Li 《Open Journal of Civil Engineering》 2018年第4期447-459,共13页
With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological... With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological disasters, such as rock burst, pressure bumping, large deformation of surrounding rock, brittle-ductile transition of rock and zonal disintegration of rock mass, which occur frequently in deep underground engineering rock mass. The impact load caused by collision, explosion, extrusion and outburst is the root cause of the dynamic instability of the deep rock mass. What should be emphasized is that high in-situ stress and blasting excavation disturbance complicate disaster developing mechanism of deep underground engineering rock mass and sharply increase the difficulty of controlling disaster. This paper is aimed at the research status and development trend, of which dynamic characteristics of deep high stress rock mass and its damage and failure effect each other under impact, and conduct analysis, in the later stage where I would discuss how to carry out the response law of the deep high-stress rock mass under the impact load and the mechanism of catastrophe developing, which is of great significance to build a model of instability and fracture evolution about deep rock mass under shock disturbance and to maintain its safety and stability. 展开更多
关键词 Deep ROCK Mass IMPULSE Loading CATASTROPHE Developing Mechanism Damage and FAILURE Effect
下载PDF
Research on the pressure variation law and enhancing CBM extraction application effect of CO_(2) phase transition jet coal seam fracturing technology
12
作者 Xin BAI Zhuoli ZHOU +4 位作者 Guicheng HE Dongming ZHANG Han YANG Zenrui FAN Dengke WANG 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期867-883,共17页
Due to the limited permeability and high methane content of the majority of China’s coal seams,significant coal mining gas disasters frequently occur.There is an urgent need to artificially improve the permeability o... Due to the limited permeability and high methane content of the majority of China’s coal seams,significant coal mining gas disasters frequently occur.There is an urgent need to artificially improve the permeability of coalbed methane(CBM)reservoirs,enhance the recovery efficiency of CBM and prevent mine gas accidents.As a novel coal rock fracture technology,the CO_(2) phase transition jet(CPTJ)has been widely used due to its advantages of safety and high fragmentation efficiency.In this study,to ascertain the effects of the pressure of CPTJ fracturing,the influence of its jet pressure on cracked coal rock was revealed,and its effect on CBM extraction was clarified.In this research,the law of CPTJ pressure decay with time was investigated using experimental and theoretical methods.Based on the results,the displacement and discrete fracture network law of CPTJ fracturing coal rock under different jet pressure conditions were studied using particle flow code numerical simulation.Finally,field experiments were conducted at the Shamushu coal mine to assess the efficiency of CPTJ in enhancing CBM drainage.The results showed that the pressure of the CPTJ decreased exponentially with time and significantly influenced the number and expansion size of cracks that broke coal rock but not their direction of development.CPTJ technology can effectively increase the number of connected microscopic pores and fractures in CBM reservoirs,strongly increase the CBM drainage flow rate by between 5.2 and 9.8 times,and significantly reduce the CBM drainage decay coefficient by between 73.58%and 88.24%. 展开更多
关键词 coalbed methane(CBM) CO_(2)phase transition jet pressure evolution damage of coal CBM drainage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部