期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Study of modeling unsteady blade row interaction in a transonic compressor stage part 1:code development and deterministic correlation analysis 被引量:5
1
作者 Yang-Wei Liu Bao-Jie Liu Li-Peng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期281-290,共10页
The average-passage equation system (APES) provides a rigorous mathematical framework for accounting for the unsteady blade row interaction through multistage compressors in steady state environment by introducing det... The average-passage equation system (APES) provides a rigorous mathematical framework for accounting for the unsteady blade row interaction through multistage compressors in steady state environment by introducing deterministic correlations (DC) that need to be modeled to close the equation system.The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES.In Part 1 of this two-part paper,firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investigate the APES technique.Then steady and unsteady simulations are conducted in a transonic compressor stage.The results from both simulations are compared to highlight the significance of the unsteady interactions.Furthermore,the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial correlations (SC).Lastly,steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady results.The results from steady and time-averaging simulations are compared with the time-averaged unsteady results.The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated. 展开更多
关键词 技术开发 压气机 跨声速 定刀片 相关分析 非定常相互作用 时间平均 直流特性
下载PDF
进气畸变下风扇叶型多目标优化(英文) 被引量:9
2
作者 陈梦羽 鹿哈男 +1 位作者 潘天宇 李秋实 《风机技术》 2019年第1期1-10,I0008,共11页
BLI(Boundary Layer Ingestion)推进系统能显著降低飞机耗油率,但会随之带来风扇进气畸变问题,并严重影响其气动性能。为降低进气畸变条件下风扇叶型的损失并提高其抗畸变能力,选取某可控扩散叶型CDA(controlled diffusion airfoil)为... BLI(Boundary Layer Ingestion)推进系统能显著降低飞机耗油率,但会随之带来风扇进气畸变问题,并严重影响其气动性能。为降低进气畸变条件下风扇叶型的损失并提高其抗畸变能力,选取某可控扩散叶型CDA(controlled diffusion airfoil)为研究对象,以最小化叶型损失和损失对攻角的敏感性为优化目标,通过多目标遗传算法MOGA(Multi-objective genetic algorithm)结合BP(Back-Propagation)神经网络对叶型进行多目标优化。经过优化,得到了在进气畸变条件下有较好气动性能的风扇叶型。与初始叶型相比,叶型在正攻角下的损失显著降低,同时其损失对攻角的敏感性降低了32%,低总压损失范围拓宽了21%。 展开更多
关键词 INLET DISTORTION FAN AIRFOIL Profile Loss MULTI-OBJECTIVE Optimization
下载PDF
Non-equilibrium turbulent phenomena in the ?ow over a backward-facing ramp 被引量:1
3
作者 Le FANG Hongkai ZHAO +2 位作者 Weidan NI Jian FANG Lipeng LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第2期215-236,共22页
Non-equilibrium turbulence phenomena have raised great interests in recent years. Significant efforts have been devoted to non-equilibrium turbulence properties in canonical flows, e.g., grid turbulence, turbulent wak... Non-equilibrium turbulence phenomena have raised great interests in recent years. Significant efforts have been devoted to non-equilibrium turbulence properties in canonical flows, e.g., grid turbulence, turbulent wakes, and homogeneous isotropic turbulence(HIT). The non-equilibrium turbulence in non-canonical flows, however, has rarely been studied due to the complexity of the flows. In the present contribution, a directnumerical simulation(DNS) database of a turbulent flow is analyzed over a backwardfacing ramp, the flow near the boundary is demonstrated, and the non-equilibrium turbulent properties of the flow in the wake of the ramp are presented by using the characteristic parameters such as the dissipation coefficient C and the skewness of longitudinal velocity gradient Sk, but with opposite underlying turbulent energy transfer properties. The equation of Lagrangian velocity gradient correlation is examined, and the results show that non-equilibrium turbulence is the result of phase de-coherence phenomena, which is not taken into account in the modeling of non-equilibrium turbulence. These findings are expected to inspire deeper investigation of different non-equilibrium turbulence phenomena in different flow conditions and the improvement of turbulence modeling. 展开更多
关键词 NON-EQUILIBRIUM TURBULENCE BACKWARD RAMP direct numerical simulation(DNS)
下载PDF
Airside pressure drop characteristics of three analogous serpentine tube heat exchangers considering heat transfer for aero-engine cooling 被引量:1
4
作者 Yinlong LIU Guoqiang XU +3 位作者 Yanchen FU Jie WEN Shaoshuai QI Lulu LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期32-46,共15页
This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In hig... This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In high speed flight,the compressor bleed air used to cool high temperature turbine blades and other hot components is too hot.Hence,aviation kerosene is applied to precool the compressor bleed air by means of novel air–fuel heat exchangers.Three light and compact heat exchangers including dozens of in-line thin serpentine tube bundles were designed and manufactured,with little difference existing in aspects of tube pitches and outer diameters among three heat exchangers.The fuel flows inside a series of parallel stainless serpentine tubes(outer diameter:2.2,1.8,1.4 mm with 0.2 mm thickness),while the air externally flows normal to tube bundles and countercurrent with fuel.Experimental studies were carried out to investigate the airside pressure drop characteristics on isothermal states with the variation of air mass flow rates and inlet temperatures.Non-isothermal measurements have also been performed to research the effect of heat transfer on pressure drops.The experimental results show that inlet temperatures have significant influence on pressure drops,and higher temperatures lead to higher pressure drops at the same mass flow rate.The hydraulic resistance coefficient decreases quickly with Reynolds number,and the descent rate slows down when Re>6000 for all three heat exchangers.Additionally,the pressure drop on heat transfer states is less than that on isothermal states for the same average temperatures.Moreover,the pressure drop through heat exchangers is greatly affected by attack angles and transverse pitches,and an asymmetric M-shaped velocity profile is generated in the crosssection of sector channels. 展开更多
关键词 AERO-ENGINE Heat exchanger Heat transfer Pressure drop Serpentine tube
原文传递
Description of inverse energy cascade in homogeneous isotropic turbulence using an eigenvalue method
5
作者 Feng LIU Hantao LIU +1 位作者 Hongkai ZHAO Pengfei LYU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1233-1246,共14页
A description of inverse energy cascade(from small scale to large scale)in homogeneous isotropic turbulence is introduced by using an eigenvalue method.We show a special isotropic turbulence,in which the initial condi... A description of inverse energy cascade(from small scale to large scale)in homogeneous isotropic turbulence is introduced by using an eigenvalue method.We show a special isotropic turbulence,in which the initial condition is constructed by reversing the velocity field in space,i.e.,the time-reversed turbulence.It is shown that the product of eigenvalues of the rate-of-strain tensor can quantitatively describe the backward energy transfer process.This description is consistent to the velocity derivative skewness Sk.However,compared with Sk,it is easier to be obtained,and it is expected to be extended to anisotropic turbulence.Furthermore,this description also works for the resolved velocity field,which means that it can be used in engineering turbulent flows.The description presented here is desired to inspire future investigation for the modeling of the backward energy transfer process and lay the foundation for the accurate prediction of complex flows. 展开更多
关键词 inverse energy cascade homogeneous isotropic turbulence eigenvalue method turbulence model
下载PDF
Rational subgrid-scale modelling: a short survey
6
作者 L.Fang L.P.Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第3期143-146,共4页
We review the previous attempts of rational subgrid-scale(SGS) modelling by employing the Kolmogorov equation of filtered quantities. Aiming at explaining and solving the underlying problems in these models, we also i... We review the previous attempts of rational subgrid-scale(SGS) modelling by employing the Kolmogorov equation of filtered quantities. Aiming at explaining and solving the underlying problems in these models, we also introduce the recent methodological investigations for the rational SGS modelling technique by defining the terms of assumption and restriction. These methodological works are expected to provide instructive criterions for not only the rational SGS modelling, but also other types of SGS modelling practices. 展开更多
关键词 建模技术 SGS 模特儿 方法学 启发性
下载PDF
Numerical Investigation into the Transient Behavior of the Spike-Type Rotating Stall for a Transonic Compressor Rotor
7
作者 Pengfei Ju Fangfei Ning +1 位作者 Zhiting Tong Jingying Wang 《Fluid Dynamics & Materials Processing》 EI 2022年第3期761-773,共13页
In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Sto... In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor. 展开更多
关键词 Transonic compressor spike stall numerical simulation early disturbance dynamic signal
下载PDF
不同间隙大小轴流压气机转子叶尖泄漏非定常流动的DDES研究(英文)
8
作者 钟路阳 柳阳威 陆利蓬 《风机技术》 2019年第2期1-9,I0006,共10页
叶尖泄漏流动对航空发动机的压气机性能有很大的影响,对其进行准确的数值模拟十分重要。延迟脱落涡模拟(DDES)方法在保证计算准确性的同时节省了计算资源。本文针对不同间隙大小和不同工况对大尺寸低速轴流压气机转子进行了DDES 模拟。... 叶尖泄漏流动对航空发动机的压气机性能有很大的影响,对其进行准确的数值模拟十分重要。延迟脱落涡模拟(DDES)方法在保证计算准确性的同时节省了计算资源。本文针对不同间隙大小和不同工况对大尺寸低速轴流压气机转子进行了DDES 模拟。将时均结果与瞬时结果进行了比较,分析了不同叶尖尺寸下流动的非定常性。然后利用LUMLEY 三角形分析了叶尖泄漏流动的雷诺应力各向异性。各向异性沿叶尖泄漏涡向下游发展方向变化。小间隙情况下各向异性较弱,这是由于小间隙情况下流动更加稳定。最后,利用快速傅里叶变换(FFT)分析了泄漏涡核心的速度脉动频谱,讨论了泄漏流动的非定常性。 展开更多
关键词 叶尖泄漏涡 压气机转子 小间隙 非定常流动 轴流 应力各向异性 快速傅里叶变换 泄漏流动
下载PDF
A multi-scale framework for life reduction assessment of turbine blade caused by microstructural degradation
9
作者 Xiaoguang YANG Menglei WANG +2 位作者 Duoqi SHI Zhenlei LI Yongsheng FAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期186-200,共15页
The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a m... The prolonged thermal exposure with centrifugal load results in microstructural degradation,which ultimately leads to a reduction in the fatigue and creep resistance of the turbine blades.The present work proposes a multi-scale framework to estimate the life reduction of turbine blades,which combines a microstructural degradation model,a two-phase constitutive model,and a microstructure-dependent fatigue and creep life reduction model.The framework with multi-scale models is validated by a Single Crystal(SC)Ni-based superalloy at the microstructural length-scale and is then applied to calculate the microstructural degradation and the fatigue and creep life reduction of turbine blades under two specific service conditions.The simulation results and quantitative analysis show that the microstructural degradation and fatigue and creep life reduction of the turbine blade are heavily influenced by the variations in the proportion of the intermediate state,namely,the maximum rotor speed status,in the two specific service conditions.The intermediate state accelerates the microstructural degradation and leads to a reduction of the life,especially the effective fatigue life reserve due to the higher temperature and rotational speed than that of the 93%maximum rotor speed status marked as the reference state.The proposed multi-scale framework provides a capable approach to analyze the reduction of the fatigue and creep life for turbine blade induced by microstructural degradation,which can assist to determine a reasonable Time Between Overhaul(TBO)of the engine. 展开更多
关键词 CREEP FATIGUE Life reduction Microstructural degradation Multi-scale modeling Turbine blades
原文传递
Experimental and computational investigation on flow characteristics of rotating cavities with high inlet pre-swirl axial throughflow
10
作者 Sipeng WANG Xiang LUO +4 位作者 Linji GUO Zeyu WU Yang BAI Zongchao LI Lichun MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期276-293,共18页
As an integral part of the internal air system of aero-engines,the axial throughflow of the cooling air can interact with the cavity flow between the rotating compressor disks,forming a threedimensional,unsteady,and u... As an integral part of the internal air system of aero-engines,the axial throughflow of the cooling air can interact with the cavity flow between the rotating compressor disks,forming a threedimensional,unsteady,and unstable flow field.The flow characteristics in an engine-like rotating multi-stage cavity with throughflow were investigated using particle image velocimetry,flow visualization technology and three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS)simulations.The focus of current research was to understand the distribution of the mean swirl ratio and its variation with a wide range of non-dimensional parameters in the co-rotating cavity with high inlet pre-swirl axial throughflow.The maximum axial Reynolds number and rotational Reynolds numbers could reach 4.41×10^(4)and 1.24×10^(6),respectively.The velocity measurement results indicate that the mean swirl ratio is greater than 1 and decreases with an increase in the radial position.The flow structure is dominated by the Rossby number,and two different flow patterns (flow penetration and flow stratification) are identified and confirmed by flow visualization images.In the absence of buoyancy,the flow penetration caused by the precession of the throughflow makes it easier for the throughflow to reach a high radius region.Satisfactory consistency of results between measurements and numerical calculations is obtained.This study provides a theoretical basis and data support for toroidal vortex breakdown,which is of practical significance for the design of high-pressure compressor cavities. 展开更多
关键词 Compressor Axial throughflow Rotating cavity flow Particle image velocimetry Unsteady RANS Flow pattern
原文传递
Effect of wire mesh casing treatment on axial compressor performance and stability
11
作者 Ming ZHANG Jiaming ZHANG +3 位作者 Jiahao HU Xu DONG Dakun SUN Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期60-76,共17页
In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is lai... In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is laid on the surface of the circumferential groove.Parametric studies were conducted on the low-speed axial flow compressor,including the groove width,axial location,and mesh count.The optimum axial location for WMCT is related to its groove width.A higher wire mesh count results in a smaller compressor stall margin improvement.Steady simulations were carried out to study the effect of WMCT on the flow structure of the compressor.The wire mesh in the WMCT has a certain flow resistance,which restricts the flow into and out of the groove.Due to the WMCT,the flow parameter in the tip region of the rotor is less sensitive to changes in the operating conditions of the compressor.The WMCT causes the rotor tip blade loading to shift backward,inhibiting the formation of spill forward of the leakage flow,and thus improving the stability of the compressor.The flow resistance on the groove surface is a new degree-of-freedom for the casing treatment designer. 展开更多
关键词 Axial compressor Wire mesh casing treatment Tip clearance flow Stall margin Blade loading
原文传递
Flow characteristics of radial inflow in impeller rear cavity with baffle plate
12
作者 Yang BAI Xiang LUO +3 位作者 Dongdong LIU Zeyu WU Xiaoqiang ZHANG Sipeng WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期270-282,共13页
The research purpose of this paper is to explore the influence of the baffle plate on the airflow in the rear cavity of the centrifugal impeller and optimize the performance of the secondary air system’s air bleed se... The research purpose of this paper is to explore the influence of the baffle plate on the airflow in the rear cavity of the centrifugal impeller and optimize the performance of the secondary air system’s air bleed section.In this paper,a comprehensive experimental study was carried out on the flow characteristics in the impeller rear cavity with baffle plate.The windage torque,flow structure and pressure drop between inlet and outlet were measured respectively.The experiment was carried out with the condition that the range of rotational Reynolds number was from 8.33×10^(5)to 22.2×10^(5)and the range of mass flow rate coefficient was from 0.92×10^(4)to 2.92×10^(4).The results show that the static cavity and the narrow stator-rotor cavity formed by the baffle plate effectively suppress the overall swirl coefficient in the cavity.Thus,the static pressure and total pressure drop in the rotor-stator cavity were reduced.The influence of the baffle plate on the windage torque of the rotary disk is related to the turbulence parameters.Under large turbulence parameters,the windage torque would be reduced with baffle plate,while under small turbulence parameters,the baffle plate would increase with baffle plate.In general,the baffle plate can improve the flow capacity and optimize the bleed air performance with proper structure and operation conditions. 展开更多
关键词 Impeller rear cavity Baffle plate Flow structure Windage torque Pressure drop
原文传递
Experimental investigation of flow field in a laboratory-scale compressor 被引量:3
13
作者 Ma Hongwei Wei Wei Xavier Ottavy 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期31-46,共16页
The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establis... The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation(LES). Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry(SPIV). The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV,and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phasesaccording to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the splitting process is weak and the turbulent mixing phase is dominant. 展开更多
关键词 DATABASE Laboratory-scale compressor SPIV Tip leakage flow Tip leakage vortex
原文传递
High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil 被引量:2
14
作者 Nan Xie Yu-meng Tang Yang-wei Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第1期1-16,共16页
Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-ada... Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) k — ω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale. 展开更多
关键词 Tip leakage vortex cavitation leading-edge cavitation large eddy simulation(LES) grid-adaptive simulation scale-adaptive simulation
原文传递
Study of limits to the rotation function in the SA-RC turbulence model 被引量:1
15
作者 Wenhao LI Yangwei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期246-265,共20页
The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of th... The Rotation and Curvature(RC)correction is an important turbulence model modifi-cation approach,and the Spalart-Allmaras model with the RC correction(SA-RC)has been exten-sively studied and used.As a multiplier of the modelling equation’s production term,the rotation function f_(r1)should have a cautiously designed value range,but its limit varies in different models and flow solvers.Therefore,the need of restriction is discussed theoretically,and the common range of f_(r1)is explored in Burgers vortexes.Afterwards,the SA-RC model with different limits is tested numerically.Negative f_(r1)always appears in the SA-RC model,and the difference between simula-tion results brought by the limits is not negligible.A lower limit of 0 enhances turbulence produc-tion,and therefore the vortex structures are dissipated faster and shrink in size,while an upper limit plays an opposite role.Considering that the lower limit of 0 usually promotes the simulation accu-racy and fixes the numerical defect,whereas the upper limit worsens the predictive performance in most cases,it is recommended to limit f_(r1)non-negative while utilizing the SA-RC model.In addi-tion,the RC-corrected model has a better prediction of the attached flow near curved walls,while the SA-Helicity model largely improves the simulation accuracy of three-dimensional large-scale vortices.The model combining both corrections has the potential to become more adaptive and more accurate. 展开更多
关键词 Non-equilibrium transport characteristics Rotation and curvature cor-rection Rotation function SA turbulence model Separation flow Tip leakage flow
原文传递
Numerical and experimental study of bleed impact in multistage axial compressors 被引量:1
16
作者 Baojie LIU Xinwei ZHUANG +1 位作者 Guangfeng AN Xianjun YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期1-16,共16页
In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment i... In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment is conducted on a four-stage low-speed axial compressor,and a specific computational model is built to simulate the experiment environment accurately.To illuminate the fluid mechanisms of bleeding effect in detail,both the experiment and the simulation are carried out twice,i.e.,in the first time,the mass flow rate upstream the bleed location is constant under different bleed rate conditions;while in the second time,the mass flow rate downstream the bleed location is constant under different bleed rate conditions.The results demonstrate that inter-stage bleeding has little influence on upstream compressor characteristics,and affects the upstream flow field only in the rear half of the stator.The bleed effect on the downstream flow field is embodied in the variation of an incoming flow profile,an increase as the compressor inlet flow coefficient decreases.Therefore,such an effect is only significant on compressor characteristics at small flow coefficient conditions.In multistage compressors,the variation of compressor characteristics and flow field caused by inter-stage bleeding is the comprehensive result of the bleeding and the variation of the upstream working condition.In addition,the comparison between numerical and experimental results shows that the flow moves towards top half of span through the downstream rotor passage in the numerical simulation,whereas the trend of flow field variation with different bleed rates at the outlet of the downstream rotor and stator is the same with that at the inlet of the downstream rotor in the experiment,which means that the numerical method has overestimated the radial mixing intensity of the flow. 展开更多
关键词 Compressor characteristics Inter-stage bleeding Low-speed compressor experiment Multistage axial compressor Spanwise mixing
原文传递
Exploration of acceptable operating range for a compression system in a double bypass engine
17
作者 Ruoyu WANG Xianjun YU +1 位作者 Baojie LIU Guangfeng AN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期111-122,共12页
The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system... The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector. 展开更多
关键词 Compression system Coupling effect Matching mechanism Multi-dimensional method Operation range Variable cycle engine
原文传递
Effects of swirl and hot streak on thermal performances of a high-pressure turbine
18
作者 Shenghui ZHANG Shuiting DING +1 位作者 Peng LIU Tian QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期250-267,共18页
Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This... Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This paper presents a numerical investigation on the behaviors of a High-Pressure(HP)turbine under a combined effect of swirl and hot streak.The investigation was conducted on a GE-E3 HP turbine with unsteady numerical simulations,which considered the realistic clocking position of the HP Nozzle Guide Vane(NGV)relative to the combustor.The influences of swirl orientations on the HS migration and thermal performances on the blade surface were examined.Results indicate that,inside the NGV passage,the swirl’s induced incidence angle effect dominates the HS radial migration.The transversal movement of HS follows the cross flow and thus makes itself approach the Suction Side(SS)and keep away from the Pressure Side(PS)as passing through the NGV,so that HS near the SS is more influenced by the incidence angle effect than that near the PS.As for the heat transfer,swirl affects the Heat Transfer Coefficient(HTC)on the NGV’s PS and SS mainly through the incidence angle effect.Different from the NGV,the inlet swirl and HS have limited effect on the HTC on the rotor blade’s PS,while on the rotor blade’s SS,the original vortex system dominates;therefore,the inlet non-uniformities merely enhance the HTC on the SS rather than alter its distribution characteristics. 展开更多
关键词 High-pressure turbine Hot streak Thermal performances SWIRL ORIENTATIONS VORTEX
原文传递
High-speed measurement of thickness of a water film formed by a jet obliquely impinging onto a plate using an LED-induced fluorescence method
19
作者 Hongzhou ZHANG Yong HUANG +1 位作者 Weiwei YUAN Lu LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期185-201,共17页
A transient thickness distribution measured with a high temporal resolution is elemental for exploring the flow characteristics and mechanism of a liquid film formed by an impinging jet.Therefore,this paper develops a... A transient thickness distribution measured with a high temporal resolution is elemental for exploring the flow characteristics and mechanism of a liquid film formed by an impinging jet.Therefore,this paper develops a high-speed Light-Emitting Diode-Induced Fluorescence(LEDIF)system based on the brightness measured directly above the liquid film.An Ultraviolet(UV)LED lamp is used to provide sufficient and continuous excitation light.Then,a system performance analysis proves that the system can continuously measure the global film thickness at a high acquisition frequency of 5000 Hz when the dye concentration is 200 mg/L.The influence of the irregularity of the excitation intensity,including the spatial non-uniformity,temporal instability,and long-term instability,on the measurement uncertainty is analyzed in detail.The analysis indicates that the system has an acceptable uncertainty of 10%.Compared with theoretical results,experimental results verify that the LEDIF system can accurately measure the global thickness of a liquid film formed by a water jet obliquely impinging onto a plate.An experimental investigation of the radial section of the raised zone demonstrates that the radial section changes from a sewing needle to an oval when the azimuth angle increases from 10°to 90°.Meanwhile,the dynamic contact angle exponentially decreases from 41.4°to 30.1°.A dynamic analysis of surface waves shows that the measured wave velocity decreases from 12 m/s to 1 m/s and the dominant frequency decreases from 1000 Hz to 10 Hz along the flow direction. 展开更多
关键词 Film thickness LED-induced fluorescence Liquid films High-speed measurement Plate impingement jet
原文传递
A modified streamwise body force model of fan with distorted inflow for rapid propulsion-airframe integrated simulation
20
作者 Zhiping LI Yafei ZHANG +1 位作者 Tianyu PAN Jian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期202-213,共12页
Streamwise Body Force Model(SBFM)could be used to simulate the force of blade on the airflow,resulting in rapid propulsion-airframe integrated simulation.However,when subjected to inlet distortion,the upstream flow fi... Streamwise Body Force Model(SBFM)could be used to simulate the force of blade on the airflow,resulting in rapid propulsion-airframe integrated simulation.However,when subjected to inlet distortion,the upstream flow field of fan stage is redistributed,which causes inaccurate prediction of fan stage performance.As inspired by the upstream influence of compressor,this paper aims to present a modification strategy for SBFM method to predict the compressor performance under circumferential inlet distortion without any knowledge of compressor geometry.Based on the linearized motion equation,the Upstream Influence Model(UIM)is introduced to predict the upstream flow field redistribution.Then the theoretical Mach number at Aerodynamic Interface Plane(AIP)position is calculated and selected to determine the corresponding body force coefficients based on the functional relationship between body force coefficients and Mach number,thus the upstream influence of compressor could be accurately quantified and the Modified Streamwise Body Force Model(MSBFM)could be established.Two studied cases are calculated with different methods and the upstream flow fields are analyzed.The prediction error of MSBFM method for compressor adiabatic efficiency is less than 3%,and the calculation efficiency is improved 20 times under the condition of ensuring computing accuracy.The MSBFM method has the potential for rapid propulsion-airframe integrated simulation. 展开更多
关键词 Integrated simulation Streamwisebody force model Circumferential inletdistor-tion Upstream influence model Compressorperformance
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部