Helicity-dependent photocurrent(HDPC)of the surface states in a high-quality topological insulator(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplate grown by chemical vapor deposition(CVD)is investigated.By investigating the angle...Helicity-dependent photocurrent(HDPC)of the surface states in a high-quality topological insulator(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplate grown by chemical vapor deposition(CVD)is investigated.By investigating the angle-dependent HDPC,it is found that the HDPC is mainly contributed by the circular photogalvanic effect(CPGE)current when the incident plane is perpendicular to the connection of the two contacts,whereas the circular photon drag effect(CPDE)dominates the HDPC when the incident plane is parallel to the connection of the two contacts.In addition,the CPGE of the(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplate is regulated by temperature,light power,excitation wavelength,the source–drain and ionic liquid top-gate voltages,and the regulation mechanisms are discussed.It is demonstrated that(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplates may provide a good platform for novel opto-spintronics devices.展开更多
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a...Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.展开更多
A Ga_(2)O_(3)/diamond separate absorption and multiplication avalanche photodiode(SAM-APD)with mesa structure has been proposed and simulated.The simulation is based on an optimized Ga_(2)O_(3)/diamond heterostructure...A Ga_(2)O_(3)/diamond separate absorption and multiplication avalanche photodiode(SAM-APD)with mesa structure has been proposed and simulated.The simulation is based on an optimized Ga_(2)O_(3)/diamond heterostructure TCAD physical model,which is revised by repeated comparison with the experimental data from the literature.Since both Ga_(2)O_(3)and diamond are ultra-wide bandgap semiconductor materials,the Ga_(2)O_(3)/diamond SAM-APD shows good solar-blind detection ability,and the corresponding cutoff wavelength is about 263 nm.The doping distribution and the electric field distribution of the SAM-APD are discussed,and the simulation results show that the gain of the designed device can reach 5×10^(4)and the peak responsivity can reach a value as high as 78 A/W.展开更多
We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detecto...We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.展开更多
The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left ...The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi_(2)Te_(3)film shows an opposite sign with that on the right edge.In addition,the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field,and it reverses the sign with the reversal of the electric field.As the thickness of the Bi_(2)Te_(3)film increases,the helicity-dependent photoconductivity current also increases.Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling(SOC)or the SOC introduced by the chiral impurities or defects.展开更多
A tunable grating-coupled external cavity(EC)laser is realized by employing a GaN-based laser diode as the gain device.A tuning range of 4.47 nm from 403.82 to 408.29 nm is achieved.Detailed investigations reveal that...A tunable grating-coupled external cavity(EC)laser is realized by employing a GaN-based laser diode as the gain device.A tuning range of 4.47 nm from 403.82 to 408.29 nm is achieved.Detailed investigations reveal that the injection current strongly influences the performance of the EC laser.Below the free-running lasing threshold,EC laser works stably.While above the free-running lasing threshold,a Fabry–Pérot(F-P)resonance peak in the emission spectrum and a smooth kink in the output power-injection current characteristic curve are observed,suggesting the competition between the inner F-P cavity resonance and EC resonance.Furthermore,the tuning range is found to be asymmetric and occurs predominantly on the longer wavelength side.This is interpreted in terms of the asymmetric gain distribution of GaN-based quantum well material.展开更多
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride...Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).展开更多
ZnO-Bi2O3-based varistor ceramics doped with Yb2O3 in the range from 0 to 0.4% (molar fraction) were obtained by a solid reaction route. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were...ZnO-Bi2O3-based varistor ceramics doped with Yb2O3 in the range from 0 to 0.4% (molar fraction) were obtained by a solid reaction route. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were applied to characterize the phases and microstructure of the varistor ceramics, and a DC parameter instrument for varistor ceramics was applied to investigate their electrical properties and V-I characteristics. The XRD analysis of the samples shows that the ZnO phase, Bi2O3 phase, ZnTSbaOl2-type spinel phase and Zn2Bi3Sb3O14-type pyrochlore are present, and the Yb2O3 phases and Sb2O4 phases are found in varistor ceramics with increasing amounts of Yb2O3. The average size of ZnO grain firstly increases and then decreases with the increase of Yb2O3 content. The result also shows that the threshold voltage is between 656 V/nun and 1 232 V/mm, the nonlinear coefficient is in the range of 14.1-22.3, and the leakage current is between 0.60 μA and 19.6 μA. The 0.20% Yb2O3-added ZnO-Bi2O3-based varistor ceramics sintered at 900 ℃ have the best electrical characteristics.展开更多
The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this dopi...The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.展开更多
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron tran...We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8× 10^-4. A clear narrow band detection spectrum centered at 4.5 μm has been observed above room temperature for a device with 200/times 200 ×μm^2 square mesa.展开更多
The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.D...The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.During the past decade,graphite carbon nitride(g-C3N4)has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst.However,its practical application is still impeded by several limitations and short-comings,such as high recombination rate of charge carriers,low visible-light absorption,etc.As an effective solution,the elec-tronic structure tuning of g-C_(3)N_(4)has been widely adopted.In this context,firstly,the paper critically focuses on the different strategies of electronic structure tuning of g-C_(3)N_(4)like vacancy modification,doping,crystallinity modulation and synthesis of a new molecular structure.And the recent progress is reviewed.Finally,the challenges and future trends are summarized.展开更多
A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupl...A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.展开更多
Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V se...Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V semiconductors on Si has been welldeveloped,the thermal dissipation issue and the complicated fabrication process still hinders the development of these devices.The monolithic growth of III-V materials on Si has also been demonstrated by applying complicated buffer layers or interlayers.On the other hand,the growth of lattice-matched B-doped group-III-V materials is an attractive area of research.However,due to the difficulty in growth,the development is still relatively slow.Herein,we present a comprehensive review of the recent achievements in this field.We summarize and discuss the conditions and mechanisms involved in growing B-doped group-III-V materials.The unique surface morphology,crystallinity,and optical properties of the epitaxy correlating with their growth conditions are discussed,along with their respective optoelectronic applications.Finally,we detail the obstacles and challenges to exploit the potential for such practical applications fully.展开更多
Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit grea...Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit great potential due to their tunable crystal structures,adjustable optical band gap,eco-friendly,and abundant resources.In this paper,Cu-Zn-Sn-S(CZTS)nanocrystals with different Cu content have been synthesized by using the one-pot method.By regulating the surface ligands,the reaction temperature,and the Cu content,kesterite and hexagonal wurtzite CZTS nanocrystals were obtained.The critical factors for the controllable transition between two phases were discussed.Subsequently,a series of quatern-ary CZTS nanocrystals with different Cu content were used for photocatalytic hydrogen evolution.And their band gap,energy level structure,and charge transfer ability were compared comprehensively.As a result,the pure hexagonal wurtzite CZTS nano-crystals have exhibited an improved photocatalytic hydrogen evolution activity.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) m...The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.展开更多
ZnO films prepared at different temperatures and annealed at 900^o C in oxygen are studied by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is observed that in the PL of the as-grown films ...ZnO films prepared at different temperatures and annealed at 900^o C in oxygen are studied by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The 0 ls XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (Oi) before annealing and the quenching of the Vo after annealing. By combining the two results it is deduced that the GL and YL are related to the Vo and Oi defects, respectively.展开更多
Dipolar and quadrupolar resonance wavelengths of SiO_(2)/Au nanoshell surface plasmons are designed at 560 nm to enhance the light trapping in thin film solar cells.In order to quantitatively describe the light trappi...Dipolar and quadrupolar resonance wavelengths of SiO_(2)/Au nanoshell surface plasmons are designed at 560 nm to enhance the light trapping in thin film solar cells.In order to quantitatively describe the light trapping effect,the forward−scattering efficiency(FSE)and the light trapping efficiency(LTE)are proposed by considering the light scattering direction of SiO_(2)/Au nanoshells.Based on the Mie theory,the FSE and the LTE are calculated for SiO_(2)/Au nanoshells of different dimensions,and the contributions of the dipolar and quadrupolar modes to the light trapping effect are analyzed in detail.When the surface coverage of nanoshells is 5%,the LTEs are 21.7%and 46.9%for SiO_(2)/Au nanoshells with sizes of(31 nm,69 nm)and(53 nm,141 nm),respectively.The results indicate that the SiO_(2)/Au nanoshell whose quadrupolar mode peak is designed to the strongest solar energy flux density of the solar spectrum facilitates the further enhancement of light harvesting in thin film solar cells.展开更多
10-kV 4 H–SiC p-channel insulated gate bipolar transistors(IGBTs) are designed, fabricated, and characterized in this paper. The IGBTs have an active area of 2.25 mm^2 with a die size of 3 mm× 3 mm. A step space...10-kV 4 H–SiC p-channel insulated gate bipolar transistors(IGBTs) are designed, fabricated, and characterized in this paper. The IGBTs have an active area of 2.25 mm^2 with a die size of 3 mm× 3 mm. A step space modulated junction termination extension(SSM-JTE) structure is introduced and fabricated to improve the blocking performance of the IGBTs.The SiC p-channel IGBTs with SSM-JTE termination exhibit a leakage current of only 50 nA at-10 kV. To improve the on-state characteristics of SiC IGBTs, the hexagonal cell(H-cell) structure is designed and compared with the conventional interdigital cell(I-cell) structure. At an on-state current of 50 A/cm^2, the voltage drops of I-cell IGBT and H-cell IGBT are10.1 V and 8.3 V respectively. Meanwhile, on the assumption that the package power density is 300 W/cm^2, the maximum permissible current densities of the I-cell IGBT and H-cell IGBT are determined to be 34.2 A/cm^2 and 38.9 A/cm^2 with forward voltage drops of 8.8 V and 7.8 V, respectively. The differential specific on-resistance of I-cell structure and H-cell structure IGBT are 72.36 m?·cm^2 and 56.92 m?·cm^2, respectively. These results demonstrate that H-cell structure silicon carbide IGBT with SSM-JTE is a promising candidate for high power applications.展开更多
The interface properties and electrical characteristics of the n-type 4H-SiC planar and trench metal-oxide-semiconductor (MOS) capacitors are investigated by measuring the capacitance voltage and current voltage. Th...The interface properties and electrical characteristics of the n-type 4H-SiC planar and trench metal-oxide-semiconductor (MOS) capacitors are investigated by measuring the capacitance voltage and current voltage. The flat-band voltage and interface state density are evaluated by the quasi-static method. It is not effective on further improving the interface properties annealing at 1250 ℃ in NO ambient for above 1 h due to the increasing interface shallow and fast states. These shallow states reduce the effective positive fixed charge density in the oxide. For the vertical MOS capacitors on the (1120) and (1100) faces, the interface state density can be reduced by approximately one order of magnitude, in comparison to the result of the planar MOS capacitors on the (0001) face under the same NO annealing condition. In addition, it is found that Fowler-Nordheim tunneling current occurs at an oxide electric field of 7 MV/cm for the planar MOS device. However, Poole-Frenkel conduction current occurs at a lower electric field of 4 MV/cm for the trench MOS capacitor. This is due to the local field crowded at the trench corner severely causing the electrons to be early captured at or emitted from the SiO2/SiC interface. These results provide a reference for an in-depth understanding of the mobility-limiting factors and long term reliability of the trench and planar SiO2/SiC interfaces.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074036,61674038,and 11574302)the Foreign Cooperation Project of Fujian Province,China(Grant No.2023I0005)+2 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF202108)the National Key Research and Development Program of China(Grant No.2016YFB0402303)the Foundation of Fujian Provincial Department of Industry and Information Technology of China(Grant No.82318075)。
文摘Helicity-dependent photocurrent(HDPC)of the surface states in a high-quality topological insulator(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplate grown by chemical vapor deposition(CVD)is investigated.By investigating the angle-dependent HDPC,it is found that the HDPC is mainly contributed by the circular photogalvanic effect(CPGE)current when the incident plane is perpendicular to the connection of the two contacts,whereas the circular photon drag effect(CPDE)dominates the HDPC when the incident plane is parallel to the connection of the two contacts.In addition,the CPGE of the(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplate is regulated by temperature,light power,excitation wavelength,the source–drain and ionic liquid top-gate voltages,and the regulation mechanisms are discussed.It is demonstrated that(Bi_(0.7)Sb_(0.3))_(2)Te_(3)nanoplates may provide a good platform for novel opto-spintronics devices.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0204001,2018YFA0209103,2016YFB0400101,and 2016YFB0402303)the National Natural Science Foundation of China(Grant Nos.61627822,61704121,61991430,and 62074036)Postdoctoral Research Program of Jiangsu Province(Grant No.2021K599C).
文摘Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3608602)the Beijing Municipal Science and Technology Commission(Grant No.Z181100004418009)the National Natural Science Foundation of China(Grant No.61927806)。
文摘A Ga_(2)O_(3)/diamond separate absorption and multiplication avalanche photodiode(SAM-APD)with mesa structure has been proposed and simulated.The simulation is based on an optimized Ga_(2)O_(3)/diamond heterostructure TCAD physical model,which is revised by repeated comparison with the experimental data from the literature.Since both Ga_(2)O_(3)and diamond are ultra-wide bandgap semiconductor materials,the Ga_(2)O_(3)/diamond SAM-APD shows good solar-blind detection ability,and the corresponding cutoff wavelength is about 263 nm.The doping distribution and the electric field distribution of the SAM-APD are discussed,and the simulation results show that the gain of the designed device can reach 5×10^(4)and the peak responsivity can reach a value as high as 78 A/W.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203400)the National Natural Science Foundation of China(Grant Nos.61974044 and 11974368)the Shanghai Committee of Science and Technology of China(Grant Nos.20142201000 and 21ZR1421500)。
文摘We demonstrate the use of an infrared modulated photoluminescence(PL)method based on a step-scan Fourier-transform infrared spectrometer to analyze intersubband transition(ISBT)of InGaAs/InAlAs quantum cascade detector(QCD)structures.By configuring oblique and parallel excitation geometries,high signal-to-noise ratio PL spectra in near-to-far-infrared region are measured.With support from numerical calculations based on the k·p perturbation theory,the spectra is attributed to intraband and interband transitions of InGaAs/InAlAs QCD structures.Temperature evolution results show that the k-dependent transitions caused by longitudinal optical phonon-assisted scattering(Frohlich interaction)plays an important role in the ISBT.These results suggest that this infrared modulated-PL method has great potential in characterizing QCD devices and conducting performance diagnostics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074036 and 61674038)the National Key Research and Development Program of China(Grant No.2016YFB0402303)。
文摘The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi_(2)Te_(3)film shows an opposite sign with that on the right edge.In addition,the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field,and it reverses the sign with the reversal of the electric field.As the thickness of the Bi_(2)Te_(3)film increases,the helicity-dependent photoconductivity current also increases.Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling(SOC)or the SOC introduced by the chiral impurities or defects.
基金Supported by the National Natural Science Foundation of China under grant Nos 91023048,61106044,and 61274052.
文摘A tunable grating-coupled external cavity(EC)laser is realized by employing a GaN-based laser diode as the gain device.A tuning range of 4.47 nm from 403.82 to 408.29 nm is achieved.Detailed investigations reveal that the injection current strongly influences the performance of the EC laser.Below the free-running lasing threshold,EC laser works stably.While above the free-running lasing threshold,a Fabry–Pérot(F-P)resonance peak in the emission spectrum and a smooth kink in the output power-injection current characteristic curve are observed,suggesting the competition between the inner F-P cavity resonance and EC resonance.Furthermore,the tuning range is found to be asymmetric and occurs predominantly on the longer wavelength side.This is interpreted in terms of the asymmetric gain distribution of GaN-based quantum well material.
基金This work is supported mainly by the National Key Research and Development Program of China(Grant No.2018YFE0204000)the National Natural Science Foundation of China(Grant Nos.21975245,U20A20206,51972300,12004094,and 32101004)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the Science and Technology Research and Development Program of Handan(Grant No.21422111246)Prof.Y.Huang.also acknowledges the support from the Doctoral Special Fund Project of Hebei University of Engineering.Prof.K.Liu.appreciates the support from Youth Innovation Promotion Association,the Chinese Academy of Sciences(Grant No.2020114)the Beijing Nova Program(Grant No.2020117)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515110578).
文摘Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).
基金Project(BK2011243) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2007DA10512711408) supported by the Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University),China+4 种基金Project(EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment,ChinaProject(KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing,ChinaProject(KFJJ201105) supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject(11JDG084) supported by the Research Foundation of Jiangsu University,China
文摘ZnO-Bi2O3-based varistor ceramics doped with Yb2O3 in the range from 0 to 0.4% (molar fraction) were obtained by a solid reaction route. The X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were applied to characterize the phases and microstructure of the varistor ceramics, and a DC parameter instrument for varistor ceramics was applied to investigate their electrical properties and V-I characteristics. The XRD analysis of the samples shows that the ZnO phase, Bi2O3 phase, ZnTSbaOl2-type spinel phase and Zn2Bi3Sb3O14-type pyrochlore are present, and the Yb2O3 phases and Sb2O4 phases are found in varistor ceramics with increasing amounts of Yb2O3. The average size of ZnO grain firstly increases and then decreases with the increase of Yb2O3 content. The result also shows that the threshold voltage is between 656 V/nun and 1 232 V/mm, the nonlinear coefficient is in the range of 14.1-22.3, and the leakage current is between 0.60 μA and 19.6 μA. The 0.20% Yb2O3-added ZnO-Bi2O3-based varistor ceramics sintered at 900 ℃ have the best electrical characteristics.
基金Project(BK2011243) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment, China+4 种基金Project(KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing, ChinaProject(KFJJ201105) supported by the Opening Program of State key Laboratory of Electronic Thin Films and Integrated Devices, ChinaProject(2011-22) supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University, ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province, ChinaProject(11JDG084) supported by the Research Foundation of Jiangsu University, China
文摘The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.
基金Supported by the National Science Fund for Distinguished Young Scholars of China under Grant No 60525406, the National Natural Science Foundation of China under Grant Nos 60736031, 60806018, 60906026 and 10990100, the National Basic Research Program of China under Grant No 2006CB604903, and the National High-tcch R&D Program of China under Grant Nos 2007AA03Z446 and 2009AA03Z403.
文摘We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8× 10^-4. A clear narrow band detection spectrum centered at 4.5 μm has been observed above room temperature for a device with 200/times 200 ×μm^2 square mesa.
基金mostly supported by the National Natural Science Foundation of China(Nos.21975245,51972300,61674141,12004094,and 21976049)the Key Research Program of Frontier Science,CAS(QYZDB-SSW-SLH006)+7 种基金the National Key Research and Development Program of China(Nos.2017YFA0206600 and 2018YFE0204000)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)the Natural Science Foundation of Hebei Province(F2019402063)the Youth Foundation of Hebei Province Department of Education(QN2019326)the Science and Technology Research and Development Program of Handan city(21422111246)the Key Project of Handan University(2018101)the support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020114)the support from the Doctoral Special Fund Project of Hebei University of Engineering。
文摘The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via pho-tocatalysis is one of most promising strategies to resolve the global energy and environment issues.During the past decade,graphite carbon nitride(g-C3N4)has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst.However,its practical application is still impeded by several limitations and short-comings,such as high recombination rate of charge carriers,low visible-light absorption,etc.As an effective solution,the elec-tronic structure tuning of g-C_(3)N_(4)has been widely adopted.In this context,firstly,the paper critically focuses on the different strategies of electronic structure tuning of g-C_(3)N_(4)like vacancy modification,doping,crystallinity modulation and synthesis of a new molecular structure.And the recent progress is reviewed.Finally,the challenges and future trends are summarized.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 60525406)the National Natural Science Foundation of China (Grant Nos. 60736031,60806018,and 60906026)+1 种基金the National Basic Research Program of China (Grant No. 2006CB604903)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z446 and 2009AA03Z403)
文摘A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
文摘Optoelectronic devices on silicon substrates are essential not only to the optoelectronic integrated circuit but also to low-cost lasers,large-area detectors,and so forth.Although heterogeneous integration of III-V semiconductors on Si has been welldeveloped,the thermal dissipation issue and the complicated fabrication process still hinders the development of these devices.The monolithic growth of III-V materials on Si has also been demonstrated by applying complicated buffer layers or interlayers.On the other hand,the growth of lattice-matched B-doped group-III-V materials is an attractive area of research.However,due to the difficulty in growth,the development is still relatively slow.Herein,we present a comprehensive review of the recent achievements in this field.We summarize and discuss the conditions and mechanisms involved in growing B-doped group-III-V materials.The unique surface morphology,crystallinity,and optical properties of the epitaxy correlating with their growth conditions are discussed,along with their respective optoelectronic applications.Finally,we detail the obstacles and challenges to exploit the potential for such practical applications fully.
基金the National Natural Science Foundation of China(Nos.61974009,62075005,and 62105019).
文摘Hydrogen energy is a powerful and efficient energy resource,which can be produced by photocatalytic water split-ting.Among the photocatalysis,multinary copper-based chalcogenide semiconductor nanocrystals exhibit great potential due to their tunable crystal structures,adjustable optical band gap,eco-friendly,and abundant resources.In this paper,Cu-Zn-Sn-S(CZTS)nanocrystals with different Cu content have been synthesized by using the one-pot method.By regulating the surface ligands,the reaction temperature,and the Cu content,kesterite and hexagonal wurtzite CZTS nanocrystals were obtained.The critical factors for the controllable transition between two phases were discussed.Subsequently,a series of quatern-ary CZTS nanocrystals with different Cu content were used for photocatalytic hydrogen evolution.And their band gap,energy level structure,and charge transfer ability were compared comprehensively.As a result,the pure hexagonal wurtzite CZTS nano-crystals have exhibited an improved photocatalytic hydrogen evolution activity.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金supported by the National Natural Science Foundation of China (Grant No. 60876003)the Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. Y072011000 and ISCAS2008T04)the Science and Technology Projects of the State Grid Corporation of China (ZL71-09-001)
文摘The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.
基金Supported by the Special Funds for Major State Basic Research Programme of China under No 2006CB604907, and the National Natural Science Foundation of China under Grant No 60506002.
文摘ZnO films prepared at different temperatures and annealed at 900^o C in oxygen are studied by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The 0 ls XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (Oi) before annealing and the quenching of the Vo after annealing. By combining the two results it is deduced that the GL and YL are related to the Vo and Oi defects, respectively.
基金by the Natural Science Foundation of Beijing under Grant No 2102042the National Natural Science Foundation of China under Grant No 61006050+1 种基金the Fundamental Research Funds for the Central Universities under Grant No 10QG24the National Basic Research Program of China under Grant No 2010CB933800.
文摘Dipolar and quadrupolar resonance wavelengths of SiO_(2)/Au nanoshell surface plasmons are designed at 560 nm to enhance the light trapping in thin film solar cells.In order to quantitatively describe the light trapping effect,the forward−scattering efficiency(FSE)and the light trapping efficiency(LTE)are proposed by considering the light scattering direction of SiO_(2)/Au nanoshells.Based on the Mie theory,the FSE and the LTE are calculated for SiO_(2)/Au nanoshells of different dimensions,and the contributions of the dipolar and quadrupolar modes to the light trapping effect are analyzed in detail.When the surface coverage of nanoshells is 5%,the LTEs are 21.7%and 46.9%for SiO_(2)/Au nanoshells with sizes of(31 nm,69 nm)and(53 nm,141 nm),respectively.The results indicate that the SiO_(2)/Au nanoshell whose quadrupolar mode peak is designed to the strongest solar energy flux density of the solar spectrum facilitates the further enhancement of light harvesting in thin film solar cells.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB759600)the Science Challenge Project,China(Grant No.TZ2018003)+3 种基金the National Natural Science Foundation of China(Grant Nos.61474113,61574140,and 61804149)the Beijing NOVA Program,China(Grant Nos.2016071and Z181100006218121)the Beijing Municipal Science and Technology Commission Project,China(Grant No.Z161100002116018)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2012098)
文摘10-kV 4 H–SiC p-channel insulated gate bipolar transistors(IGBTs) are designed, fabricated, and characterized in this paper. The IGBTs have an active area of 2.25 mm^2 with a die size of 3 mm× 3 mm. A step space modulated junction termination extension(SSM-JTE) structure is introduced and fabricated to improve the blocking performance of the IGBTs.The SiC p-channel IGBTs with SSM-JTE termination exhibit a leakage current of only 50 nA at-10 kV. To improve the on-state characteristics of SiC IGBTs, the hexagonal cell(H-cell) structure is designed and compared with the conventional interdigital cell(I-cell) structure. At an on-state current of 50 A/cm^2, the voltage drops of I-cell IGBT and H-cell IGBT are10.1 V and 8.3 V respectively. Meanwhile, on the assumption that the package power density is 300 W/cm^2, the maximum permissible current densities of the I-cell IGBT and H-cell IGBT are determined to be 34.2 A/cm^2 and 38.9 A/cm^2 with forward voltage drops of 8.8 V and 7.8 V, respectively. The differential specific on-resistance of I-cell structure and H-cell structure IGBT are 72.36 m?·cm^2 and 56.92 m?·cm^2, respectively. These results demonstrate that H-cell structure silicon carbide IGBT with SSM-JTE is a promising candidate for high power applications.
基金supported by the National Basic Research Program of China(Grant No.2015CB759600)the National Natural Science Foundation of China(Grant Nos.61474113 and 61574140)+3 种基金the Beijing NOVA Program,China(Grant No.Z1611000049161132016071)China Academy of Engineering Physics(CAEP)Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201502)the Beijing Municipal Science and Technology Commission Project,China(Grant Nos.Z161100002116018 and D16110300430000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2012098)
文摘The interface properties and electrical characteristics of the n-type 4H-SiC planar and trench metal-oxide-semiconductor (MOS) capacitors are investigated by measuring the capacitance voltage and current voltage. The flat-band voltage and interface state density are evaluated by the quasi-static method. It is not effective on further improving the interface properties annealing at 1250 ℃ in NO ambient for above 1 h due to the increasing interface shallow and fast states. These shallow states reduce the effective positive fixed charge density in the oxide. For the vertical MOS capacitors on the (1120) and (1100) faces, the interface state density can be reduced by approximately one order of magnitude, in comparison to the result of the planar MOS capacitors on the (0001) face under the same NO annealing condition. In addition, it is found that Fowler-Nordheim tunneling current occurs at an oxide electric field of 7 MV/cm for the planar MOS device. However, Poole-Frenkel conduction current occurs at a lower electric field of 4 MV/cm for the trench MOS capacitor. This is due to the local field crowded at the trench corner severely causing the electrons to be early captured at or emitted from the SiO2/SiC interface. These results provide a reference for an in-depth understanding of the mobility-limiting factors and long term reliability of the trench and planar SiO2/SiC interfaces.