Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H ...Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carded out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15-323.15 K fitted the Arrhanius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σwater〉 σmethanol 〉σethanol Conductometry showed that the critical miceUe concentrations of the bromines in water, methanol, and ethanol were 6.8-6.9 × 10-6, 1.4-1.5 × 10-5, and 1.9-2.0×10-5 mol.L-1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.展开更多
L-(+)-α-(positive butyl)-leucine ethyl ester bromide chiral ionic liquid was synthesized by using microwave-assisted synthesis method and L-(+)-α-(positive butyl)-leucine ethyl ester terafluoroborate and h...L-(+)-α-(positive butyl)-leucine ethyl ester bromide chiral ionic liquid was synthesized by using microwave-assisted synthesis method and L-(+)-α-(positive butyl)-leucine ethyl ester terafluoroborate and hexafluorophosphate chiral ionic liquids were synthesized by the anion exchange reaction. The structures were characterized by IR, ~1HNMR and structure optimization calculation. The results of studies on physicochemical properties show that they possess better thermal stability, solubility, bio-solubility and high conductivity. They can serve as effective reaction media as well as chiral catalysts. They are presently being investigated as dispersion agents in molecular imprinting ployer.展开更多
Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements. Novel ternary intermetallic compounds R2TX3 (R = rare-earth element or U, T = transition-meta...Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements. Novel ternary intermetallic compounds R2TX3 (R = rare-earth element or U, T = transition-metal element, X = Si, Ge, Ga, In) are a significant branch of this research field due to their complex and intriguing physical properties, such as magnetic order at low temperature, spin-glass behavior, Kondo effect, heavy fermion behavior, and so on. The unique physical properties of R2TX3 compounds are related to distinctive electronic structures, crystal structures, micro- interaction, and external environment. Most R2TX3 compounds crystallize in A1B2-type or derived A1B2-type structures and exhibit many similar properties. This paper gives a concise review of the structures and physical properties of these compounds. Spin glass, magnetic susceptibility, resistivity, and specific heat of R2 TX3 compounds are discussed.展开更多
The thermal expansion of Ni3A1 intermetailic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from ...The thermal expansion of Ni3A1 intermetailic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of NiaA1 intermetailie compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10-5 to 2.7 × 10-5 K-1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of NiaA1 compound.展开更多
A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F poi...A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.展开更多
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentrati...Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.展开更多
By using the melt spinning techniques, the Fe63Co32Gd5 alloy ribbons with 15-50 m in thickness and 3-7 mm in width were prepared at the wheel speeds of 15, 20, 25 and 35 m/s. The rapid solidification microstructures w...By using the melt spinning techniques, the Fe63Co32Gd5 alloy ribbons with 15-50 m in thickness and 3-7 mm in width were prepared at the wheel speeds of 15, 20, 25 and 35 m/s. The rapid solidification microstructures were characterized by three layers, the middle layer of which reaches 80% thickness and forms the column grain of(Fe,Co) solid with Gd solution. Grain refinement takes place with the increase of the wheel speed. And after 0.5 h heat treatment at 823 K, the ribbon thickness becomes larger and the middle layer of column grain is very orderly perpendicular to the ribbon plane. The coercivity of quenched and annealed Fe63Co32Gd5 ribbons both have the inflection point at the wheel speed of 20 m/s, and the tendency is declining. The heat treatment processing makes the coercivity become lower by improving the order of(Fe,Co)17Gd2 compound. The saturation magnetization of quenched ribbons increases with the enhancement of wheel speed, whereas that of annealed ones decreases firstly and then increases. The minimum coercivity is 5.30×103 A/m and the maximum saturation magnetization is 163.62 A·m2/kg, which is obtained in the conditions of the wheel speed of 35 m/s and 0.5 h heat treatment at the temperature of 823 K.展开更多
We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonl...We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonlinearity. It is revealed that the π-staggered phase structures of the lattice soliton trains will lead to anomalous interactions. Solely by changing their initial separations, the transition between attractive and repulsive interaction forces or reversion of the energy transfer can be obtained. The ‘negative refraction' effect of the soliton trains on the interaction is also discussed. Moreover, two interacting IBSs can merge into one GST when attraction or energy transfer happens.展开更多
ZnCo2O4/Si heterostructures have been fabricated by a pulsed laser deposition method, and their transport behaviors and photovoltaic properties have been characterized. The ZnCo2O4/Si heterostructures show a good rect...ZnCo2O4/Si heterostructures have been fabricated by a pulsed laser deposition method, and their transport behaviors and photovoltaic properties have been characterized. The ZnCo2O4/Si heterostructures show a good rectifying behavior at five different temperatures ranging from 50 K to 290 K. The measurements of the photovoltaic response reveals that a photovoltage of 33 mV is generated when the heterostructures are illuminated by a 532 nm laser of 250 mW/cm^2 and mechanically chopped at 2500 Hz. Both the photocurrent and the photovoltage clearly increase with the increase of the laser intensity at room temperature. However, the heterostructures' photovoltage peak decreases with the increase of the temperature. This work may open new perspectives for ZnCo2O4/Si heterostructure-based devices.展开更多
The multi-walled carbon nanotubes (MWCNTs)/chiral-polyaniline composite was synthesized by in-situ chemical polymerization. Morphology, structure as well as thermal stability of the hybrid composites were characterize...The multi-walled carbon nanotubes (MWCNTs)/chiral-polyaniline composite was synthesized by in-situ chemical polymerization. Morphology, structure as well as thermal stability of the hybrid composites were characterized by using various techniques. Moreover, the complex permeability, permittivity, and microwave absorbing characteristics of the MWCNTs/chiral-polyaniline composites have been studied. Compared with those of the polyaniline (PANI) and MWCNTs, the real part () and imaginary part () of the complex permittivity as well as dielectric dissipation factor of the MWCNTs/chiral-PANI composites were much greater, while the real part () and imaginary part () of the complex permeability and the magnetic dissipation factor were smaller. The results indicate that the microwave absorption of MWCNTs/chiral-PANI composites was mainly attributed to the dielectric loss rather than magnetic loss.展开更多
The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence ...The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autoeorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k^1.688, which leads to a N^0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N^2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.展开更多
Graphene sheets(GNs) have high conductivity, but they exhibit weak electromagnetic(EM) wave absorption performance. Here, poly(3,4-ethylenedioxythiophene)(PEDOT) nanofibers were decorated on the surface of GNs in whic...Graphene sheets(GNs) have high conductivity, but they exhibit weak electromagnetic(EM) wave absorption performance. Here, poly(3,4-ethylenedioxythiophene)(PEDOT) nanofibers were decorated on the surface of GNs in which the residual defects and groups act as the active sites and therefore are beneficial for the deposition of PEDOT nanofibers.The SEM images display that PEDOT nanofibers are successfully decorated on the surface of GNs through in situ polymerization. The diameter of the PEDOT nanofibers were ranged from 15 to 50 nm with hundreds of nanometers in length. The EM wave absorption properties of graphene, PEDOT, and GNs-PEDOT were also investigated. Compared to pure graphene and PEDOT, the EM wave absorption properties of GNs-PEDOT improved significantly. The maximum value of RLwas up to-48.1 d B at 10.5 GHz with a thickness of only 2 mm. Meanwhile, the absorption bandwidth of RL values below-10 d B was 9.4 GHz(5.8–12.3, 12.9–15.8 GHz) in the thickness of 1.5–3 mm. The enhancement is attributed to the modification of PEDOT and the unique structure of nanofibers. On one hand, the deposition of PEDOT nanofibers on the surface of GNs decreases the conductivity of graphene, and makes impedance match better. On the other hand, the unique structure of PEDOT nanofibers results in relatively large specific surfaces areas, providing more active sites for reflection and scattering of EM waves. Therefore, our findings demonstrate that the deposition of conducting polymers on GNs by non-covalent bond is an efficient way to fabricate strong EM wave absorbers.展开更多
By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three hig...By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.展开更多
The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth condi...The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth conditions on E2 (TO), E1 (TO) and A1 (LO) phonon mode frequencies are negligible. The temperature dependences of phonon linewidth and lifetime of E2 (TO) modes are analyzed in terms of an anharmonic damping effect induced by thermal and growth conditions. The results show that the lifetime of E2 (TO) mode increases when the quality of the sample improves. Unlike other phone modes, Raman shift of A1 (longitudinal optical plasma coupling (LOPC)) mode does not decrease monotonously when the temperature increases, but tends to blueshift at low temperatures and to redshift at relatively high temperatures. Theoretical analyses are given for the abnormal phenomena of A1 (LOPC) mode in 4H-SiC.展开更多
We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated ...We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.展开更多
The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the dev...The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately, both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si) TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with CB position.展开更多
Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetizat...Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.展开更多
Armchair (n, n) single walled boron nitride nanotubes with n = 2-17 are studied by the density functional theory at the B3LYP/3-21G(d) level combined with the periodic boundary conditions for simulating the ultra ...Armchair (n, n) single walled boron nitride nanotubes with n = 2-17 are studied by the density functional theory at the B3LYP/3-21G(d) level combined with the periodic boundary conditions for simulating the ultra long model. The results show that the structure parameters and the formation energies bear a strong relationship to n. The fitted analytical equations are developed with correlation coefficients larger than 0.999. The energy gaps of (2, 2) and (3, 3) tubes are indirect gaps, and the larger tubes (n = 4-17) have direct energy gaps. Results show that the armchair boron nitride nanotubes (n = 2-17) are insulators with wide energy gaps of between 5.93 eV and 6.23 eV.展开更多
Multiferroic materials,showing the coexistence and coupling of ferroelectric and magnetic orders,are of great technological and fundamental importance.However,the limitation of single phase multiferroics with robust m...Multiferroic materials,showing the coexistence and coupling of ferroelectric and magnetic orders,are of great technological and fundamental importance.However,the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically.Magnetic frustration,which can induce ferroelectricity,gives rise to multiferroic behavior.In this paper,we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity.A disordered stacking of manganites is expected to result in frustration at interfaces.We report here that a tri-color multilayer structure comprised of non-ferroelectric La;Ca;MnO;(A)/Pr;Ca;MnO;(B)/Pr;Sr;MnO;(C) layers with the disordered arrangement of ABC-ACBCAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics.The multilayer film exhibits evidence of ferroelectricity at room temperature,thus presenting a candidate for multiferroics.展开更多
In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effe...In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effects of pulling velocity and zrystal orientation on the morphological transition are investigated. The results indicate the orientation dependence of the ;ymmetry-broken double dendrites. A dendrite to symmetry-broken dendrite transition is found by varying the pulling telocity at different crystal orientations and the symmetry-broken multiple dendrites emerge as a transition state for the ;ymmetry-broken double dendrites. The state region during the transition can be well characterized through the variations ff the characteristic angle and the average primary dendritic spacing.展开更多
基金Funded by the Special Funds of the National Natural Science Foundation of China(No.21174111)
文摘Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carded out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15-323.15 K fitted the Arrhanius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σwater〉 σmethanol 〉σethanol Conductometry showed that the critical miceUe concentrations of the bromines in water, methanol, and ethanol were 6.8-6.9 × 10-6, 1.4-1.5 × 10-5, and 1.9-2.0×10-5 mol.L-1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.
基金Funded by the National Natural Science Foundation of China(No.51433008)the Project of Scientific Research of Shaanxi(No.2017GY-182)the Science and Technology Fund Project
文摘L-(+)-α-(positive butyl)-leucine ethyl ester bromide chiral ionic liquid was synthesized by using microwave-assisted synthesis method and L-(+)-α-(positive butyl)-leucine ethyl ester terafluoroborate and hexafluorophosphate chiral ionic liquids were synthesized by the anion exchange reaction. The structures were characterized by IR, ~1HNMR and structure optimization calculation. The results of studies on physicochemical properties show that they possess better thermal stability, solubility, bio-solubility and high conductivity. They can serve as effective reaction media as well as chiral catalysts. They are presently being investigated as dispersion agents in molecular imprinting ployer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51171152)the Doctoral Fund of Ministry of Education of China (Grant No. 20126102110048)+3 种基金the Research Fund of State Key Laboratory of Solidification of China (Grant No. SKLSP201202)the Open Research Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (UESTC) of China (Grant No. KFJJ201103)the NPU Foundation for Fundamental Research of China (Grant No. JC201268)the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2012JC2-02)
文摘Rare-earth compounds have been an attractive subject based on the unique electronic structures of the rare-earth elements. Novel ternary intermetallic compounds R2TX3 (R = rare-earth element or U, T = transition-metal element, X = Si, Ge, Ga, In) are a significant branch of this research field due to their complex and intriguing physical properties, such as magnetic order at low temperature, spin-glass behavior, Kondo effect, heavy fermion behavior, and so on. The unique physical properties of R2TX3 compounds are related to distinctive electronic structures, crystal structures, micro- interaction, and external environment. Most R2TX3 compounds crystallize in A1B2-type or derived A1B2-type structures and exhibit many similar properties. This paper gives a concise review of the structures and physical properties of these compounds. Spin glass, magnetic susceptibility, resistivity, and specific heat of R2 TX3 compounds are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51327901,51474175 and 51522102
文摘The thermal expansion of Ni3A1 intermetailic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of NiaA1 intermetailie compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10-5 to 2.7 × 10-5 K-1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of NiaA1 compound.
基金Project supported by the National Natural Science Foundation of China (Grant No.51074129)
文摘A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172186)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20106102120051)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2013JQ6019)
文摘Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.
基金Projects(51271149,50901060)supported by the National Natural Science Foundation of ChinaProject(NPU-310201401007JCY01007)supported by the Nothwestern Polytechnical University(NPU)Foundations for Fundamental Research,ChinaProject(2012-0009451)supported by the National Research Foundation of Korea
文摘By using the melt spinning techniques, the Fe63Co32Gd5 alloy ribbons with 15-50 m in thickness and 3-7 mm in width were prepared at the wheel speeds of 15, 20, 25 and 35 m/s. The rapid solidification microstructures were characterized by three layers, the middle layer of which reaches 80% thickness and forms the column grain of(Fe,Co) solid with Gd solution. Grain refinement takes place with the increase of the wheel speed. And after 0.5 h heat treatment at 823 K, the ribbon thickness becomes larger and the middle layer of column grain is very orderly perpendicular to the ribbon plane. The coercivity of quenched and annealed Fe63Co32Gd5 ribbons both have the inflection point at the wheel speed of 20 m/s, and the tendency is declining. The heat treatment processing makes the coercivity become lower by improving the order of(Fe,Co)17Gd2 compound. The saturation magnetization of quenched ribbons increases with the enhancement of wheel speed, whereas that of annealed ones decreases firstly and then increases. The minimum coercivity is 5.30×103 A/m and the maximum saturation magnetization is 163.62 A·m2/kg, which is obtained in the conditions of the wheel speed of 35 m/s and 0.5 h heat treatment at the temperature of 823 K.
基金Project supported by the Northwestern Polytechnical University (NPU) Foundation for Fundamental Research and the Doctorate Foundation of NPU (Grant No.CX200914)
文摘We demonstrate the coherent interactions of lattice soliton trains, including in-band solitons (IBSs) and gap soliton trains (GSTs), in optically induced two-dimensional photonic lattices with self-defocusing nonlinearity. It is revealed that the π-staggered phase structures of the lattice soliton trains will lead to anomalous interactions. Solely by changing their initial separations, the transition between attractive and repulsive interaction forces or reversion of the energy transfer can be obtained. The ‘negative refraction' effect of the soliton trains on the interaction is also discussed. Moreover, two interacting IBSs can merge into one GST when attraction or energy transfer happens.
基金Project supported by the National Natural Science Foundation of China(Grant No.61078057)the Natural Science Foundation of Shannxi Province,China(Grant No.2011GM6013)+1 种基金the Northwestern Polytechnical University Foundation for Fundamental Research,China(Grant Nos.JC20110270 and JC201271)the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,China(Grant No.LZUMMM2013001)
文摘ZnCo2O4/Si heterostructures have been fabricated by a pulsed laser deposition method, and their transport behaviors and photovoltaic properties have been characterized. The ZnCo2O4/Si heterostructures show a good rectifying behavior at five different temperatures ranging from 50 K to 290 K. The measurements of the photovoltaic response reveals that a photovoltage of 33 mV is generated when the heterostructures are illuminated by a 532 nm laser of 250 mW/cm^2 and mechanically chopped at 2500 Hz. Both the photocurrent and the photovoltage clearly increase with the increase of the laser intensity at room temperature. However, the heterostructures' photovoltage peak decreases with the increase of the temperature. This work may open new perspectives for ZnCo2O4/Si heterostructure-based devices.
文摘The multi-walled carbon nanotubes (MWCNTs)/chiral-polyaniline composite was synthesized by in-situ chemical polymerization. Morphology, structure as well as thermal stability of the hybrid composites were characterized by using various techniques. Moreover, the complex permeability, permittivity, and microwave absorbing characteristics of the MWCNTs/chiral-polyaniline composites have been studied. Compared with those of the polyaniline (PANI) and MWCNTs, the real part () and imaginary part () of the complex permittivity as well as dielectric dissipation factor of the MWCNTs/chiral-PANI composites were much greater, while the real part () and imaginary part () of the complex permeability and the magnetic dissipation factor were smaller. The results indicate that the microwave absorption of MWCNTs/chiral-PANI composites was mainly attributed to the dielectric loss rather than magnetic loss.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50976052,51136001,and 50730006)the Program for New Century Excellent Talents in University,China+1 种基金the Tsinghua University Initiative Scientific Research Program,Chinathe Tsinghua National Laboratory for Information Science and Technology TNList Cross-discipline Foundation,China
文摘The phonon relaxation and heat conduction in one-dimensional Fermi Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autoeorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k^1.688, which leads to a N^0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N^2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.
文摘Graphene sheets(GNs) have high conductivity, but they exhibit weak electromagnetic(EM) wave absorption performance. Here, poly(3,4-ethylenedioxythiophene)(PEDOT) nanofibers were decorated on the surface of GNs in which the residual defects and groups act as the active sites and therefore are beneficial for the deposition of PEDOT nanofibers.The SEM images display that PEDOT nanofibers are successfully decorated on the surface of GNs through in situ polymerization. The diameter of the PEDOT nanofibers were ranged from 15 to 50 nm with hundreds of nanometers in length. The EM wave absorption properties of graphene, PEDOT, and GNs-PEDOT were also investigated. Compared to pure graphene and PEDOT, the EM wave absorption properties of GNs-PEDOT improved significantly. The maximum value of RLwas up to-48.1 d B at 10.5 GHz with a thickness of only 2 mm. Meanwhile, the absorption bandwidth of RL values below-10 d B was 9.4 GHz(5.8–12.3, 12.9–15.8 GHz) in the thickness of 1.5–3 mm. The enhancement is attributed to the modification of PEDOT and the unique structure of nanofibers. On one hand, the deposition of PEDOT nanofibers on the surface of GNs decreases the conductivity of graphene, and makes impedance match better. On the other hand, the unique structure of PEDOT nanofibers results in relatively large specific surfaces areas, providing more active sites for reflection and scattering of EM waves. Therefore, our findings demonstrate that the deposition of conducting polymers on GNs by non-covalent bond is an efficient way to fabricate strong EM wave absorbers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61078057 and 11204227)the Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 12JK0958)
文摘By using the Born-von Kfirmfin theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four oft-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61176085,11474365 and 61377055the Department of Education of Guangdong Province under Grant No gjhz1103the Open-Project Program of the State Key laboratory of Opto-Electronic Material and Technologies of Sun Yatsen University
文摘The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth conditions on E2 (TO), E1 (TO) and A1 (LO) phonon mode frequencies are negligible. The temperature dependences of phonon linewidth and lifetime of E2 (TO) modes are analyzed in terms of an anharmonic damping effect induced by thermal and growth conditions. The results show that the lifetime of E2 (TO) mode increases when the quality of the sample improves. Unlike other phone modes, Raman shift of A1 (longitudinal optical plasma coupling (LOPC)) mode does not decrease monotonously when the temperature increases, but tends to blueshift at low temperatures and to redshift at relatively high temperatures. Theoretical analyses are given for the abnormal phenomena of A1 (LOPC) mode in 4H-SiC.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 61377035 and 11404264the Fundamental Research Funds for the Central Universities under Grant No 3102014JCQ01085
文摘We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50872112)NPU Foundation for Fundamental Research,China (Grant No. JC201017)
文摘The dependence of transistor characteristics on grain boundary (GB) position in short-channel ZnO thin film transistors (TFTs) has been investigated using two-dimensional numerical simulations. To simulate the device accurately, both tail states and deep-level states are taken into consideration. It is shown that both the transfer and output characteristics of ZnO TFTs change dramatically with varying GB position, which is different from polycrystalline Si (poly-Si) TFTs. By analysing the mechanism of the carrier transportation in the device, it is revealed that the dependence is derived from the degrees of carrier concentration descent and mobility variation with CB position.
基金supported by the National Natural Science Foundation of China(Grant No.61078057)the Natural Science Foundation of Shannxi Province,China(Grant No.2011GM6013)+2 种基金the Foundation for Fundamental Research of Northwestern Polytechnical University of China(Grant Nos.JC20110270 and 3102014JCQ01029)the Open Project of Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education,Lanzhou University,China(Grant Nos.LZUMMM2013001 and LZUMMM2014007)the Scholarship Fund of China(Grant No.201303070058)
文摘Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50572089)the Basic Research Foundation of Northwestern Polytechnical University (Grant No. JC201269)
文摘Armchair (n, n) single walled boron nitride nanotubes with n = 2-17 are studied by the density functional theory at the B3LYP/3-21G(d) level combined with the periodic boundary conditions for simulating the ultra long model. The results show that the structure parameters and the formation energies bear a strong relationship to n. The fitted analytical equations are developed with correlation coefficients larger than 0.999. The energy gaps of (2, 2) and (3, 3) tubes are indirect gaps, and the larger tubes (n = 4-17) have direct energy gaps. Results show that the armchair boron nitride nanotubes (n = 2-17) are insulators with wide energy gaps of between 5.93 eV and 6.23 eV.
基金supported by the National Natural Science Foundation of China(Grant Nos.61471301,61078057,51172183,51402240,and 51471134)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20126102110045)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.2015JQ5125)the Fundamental Research Funds for the Central Universities,China(Grant No.3102015ZY078)
文摘Multiferroic materials,showing the coexistence and coupling of ferroelectric and magnetic orders,are of great technological and fundamental importance.However,the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically.Magnetic frustration,which can induce ferroelectricity,gives rise to multiferroic behavior.In this paper,we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity.A disordered stacking of manganites is expected to result in frustration at interfaces.We report here that a tri-color multilayer structure comprised of non-ferroelectric La;Ca;MnO;(A)/Pr;Ca;MnO;(B)/Pr;Sr;MnO;(C) layers with the disordered arrangement of ABC-ACBCAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics.The multilayer film exhibits evidence of ferroelectricity at room temperature,thus presenting a candidate for multiferroics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61078057 and 51172183)the National Natural Science Foundation of Shaanxi Province,China(Grant No.2012JQ8013)+1 种基金the Aviation Foundation of China(Grant No.2011ZF53065)the NPU Foundation for Fundamental Research,China(Grant Nos.NPU-FFR-JC20110273 and JC201155)
文摘In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effects of pulling velocity and zrystal orientation on the morphological transition are investigated. The results indicate the orientation dependence of the ;ymmetry-broken double dendrites. A dendrite to symmetry-broken dendrite transition is found by varying the pulling telocity at different crystal orientations and the symmetry-broken multiple dendrites emerge as a transition state for the ;ymmetry-broken double dendrites. The state region during the transition can be well characterized through the variations ff the characteristic angle and the average primary dendritic spacing.