期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
An iterative algorithm for analysis of coupled structural-acoustic systems subject to random excitations 被引量:2
1
作者 Guo-Zhong Zhao Gang Chen Zhan Kang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期458-467,共10页
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computatio... This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper. 展开更多
关键词 Random excitation Coupled structural-acoustic systems Pseudo excitation method
下载PDF
Optimum Design and Global Analysis of Flexible Jumper for An Innovative Subsurface Production System in Ultra-Deep Water 被引量:5
2
作者 黄一 甄兴伟 +1 位作者 张崎 王文华 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期239-247,共9页
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in... The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept. 展开更多
关键词 subsurface production system flexible jumper dynamic analysis ultra-deep water
下载PDF
Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design
3
作者 Kun Yan Yunyu Wang Jun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1949-1974,共26页
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti... Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation. 展开更多
关键词 Topology optimization two fluid heat exchanger OPENFOAM large scale
下载PDF
Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method
4
作者 Weida Wu Yiqiang Wang +1 位作者 Zhonghao Gao Pai Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2001-2026,共26页
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching... Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy. 展开更多
关键词 Topology optimization microstructural design negative Poisson’s ratio large deformation
下载PDF
Beam Approximation for Dynamic Analysis of Launch Vehicles Modelled as Stiffened Cylindrical Shells 被引量:2
5
作者 Siyang Piao Huajiang Ouyang Yahui Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期571-591,共21页
A beam approximation method for dynamic analysis of launch vehicles modelled as stiffened cylindrical shells is proposed.Firstly,an initial beam model of the stiffened cylindrical shell is established based on the cro... A beam approximation method for dynamic analysis of launch vehicles modelled as stiffened cylindrical shells is proposed.Firstly,an initial beam model of the stiffened cylindrical shell is established based on the cross-sectional area equivalence principle that represents the shell skin and its longitudinal ribs as a beam with annular cross-section,and the circumferential ribs as lumped masses at the nodes of the beam elements.Then,a fine finite element model(FE model)of the stiffened cylindrical shell is constructed and a modal analysis is carried out.Finally,the initial beam model is improved through model updating against the natural frequencies and mode shapes of the fine FE model of the shell.To facilitate the comparison between the mode shapes of the fine FE model of the stiffened shell and the equivalent beam model,a weighted nodal displacement coupling relationship is introduced.To prevent the design parameters used in model updating from converging to incorrect values,a pre-model updating procedure is added before the proper model updating.The results of two examples demonstrate that the beam approximation method presented in this paper can build equivalent beam models of stiffened cylindrical shells which can reflect the global longitudinal,lateral and torsional vibration characteristics very well in terms of the natural frequencies. 展开更多
关键词 Finite element method model updating stiffened shell beam approximation model reduction.
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
6
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
Numerical analysis for the effcacy of nasal surgery in obstructive sleep apnea hypopnea syndrome 被引量:4
7
作者 Shen Yu Ying-Xi Liu +3 位作者 Xiu-Zhen Sun Ying-Feng Su Ying Wang Yin-Zhe Gai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期250-258,共9页
In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft pal... In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The effcacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram(PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further,provide a theoretical basis to solve relevant clinical problems. 展开更多
关键词 Nasal surgery Obstructive sleep apnea hypop-nea syndrome Fluid-solid interaction Numerical analysis
下载PDF
Flapwise Bending Vibration Analysis of Rotating Tapered Rayleigh Beams for the Application of Offshore Wind Turbine Blades 被引量:1
8
作者 CHEN Yan-fei ZANG Zhi-peng +5 位作者 DONG Shao-hua AO Chuan LIU Hao MA Shang HOU Fu-heng FENG Wei 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期544-553,共10页
The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle.The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via vari... The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle.The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via variational iteration method(VIM).Natural frequencies and corresponding mode shapes are examined under various rotation speed,taper ratio and slenderness ratio focusing on two types of tapered beam.The convergence of VIM is examined as part of the paper.Validation of VIM solution is made by referring to results available in other literature and corresponding results show that VIM is capable of yielding precise results in a very efficient way. 展开更多
关键词 tapered Rayleigh beam flapwise bending vibration variational iteration natural frequencies CONVERGENCE
下载PDF
Local Data Analysis for Eliminating End Restraint of Triaxial Specimen 被引量:1
9
作者 刘潇 邵龙潭 郭晓霞 《Transactions of Tianjin University》 EI CAS 2013年第5期372-380,共9页
A data processing method was proposed for eliminating the end restraint in triaxial tests of soil. A digital image processing method was used to calculate the local deformations and local stresses for any region on th... A data processing method was proposed for eliminating the end restraint in triaxial tests of soil. A digital image processing method was used to calculate the local deformations and local stresses for any region on the surface of triaxial soil specimens. The principle and implementation of this digital image processing method were introduced as well as the calculation method for local mechanical properties of soil specimens. Comparisons were made between the test results calculated by the data from both the entire specimen and local regions, and it was found that the deformations were more uniform in the middle region compared with the entire specimen. In order to quantify the nonuniform characteristic of deformation, the non-uniformity coefficients of strain were defined and calculated. Traditional and end-lubricated triaxial tests were conducted under the same condition to investigate the effects of using local region data for deformation calculation on eliminating the end restraint of specimens. After the statistical analysis of all test results, it was concluded that for the tested soil specimen with the size of 39.1 mm × 80 ram, the utilization of the middle 35 mm region of traditional specimens in data processing had a better effect on eliminating end restraint compared with end lubrication. Furthermore, the local data analysis in this paper was validated through the comparisons with the test results from other researchers. 展开更多
关键词 end restraint triaxial test digital image processing end lubrication local data analysis
下载PDF
NUMERICAL ANALYSIS OF DELAMINATION GROWTH FOR STIFFENED COMPOSITE LAMINATED PLATES
10
作者 白瑞祥 陈浩然 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期405-417,共13页
A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuc... A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures. 展开更多
关键词 finite element method POSTBUCKLING energy release rate delamination growth stiffened composite laminated plate
下载PDF
Analysis-Aware Modelling of Spacial Curve for Isogeometric Analysis of Timoshenko Beam
11
作者 Yang Xia Luting Deng Jian Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期605-626,共22页
Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling.The purpose of this paper is to investigate the geometric fitting method for curved beam structure... Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling.The purpose of this paper is to investigate the geometric fitting method for curved beam structure from points,and to get high-quality parametric model for isogeometric analysis.ATimoshenko beam element is established for an initially curved spacial beam with arbitrary curvature.The approximation and interpolation methods to get parametric models of curves from given points are examined,and three strategies of parameterization,meaning the equally spaced method,the chord length method and the centripetal method are considered.The influences of the different geometric approximation algorithms on the precision of isogeometric analysis are examined.The static analysis and the modal analysis with the established parametric models are carried out.Three examples with different complexities,the quarter arc curved beam,the Tschirnhausen beam and the Archimedes spiral beam are examined.The results show that for the geometric approximation the interpolation method performs good and maintains high precision.The fitting algorithms are able to provide parametric models for isogeometric analysis of spacial beam with Timoshenko model.The equally spaced method and centripetal method perform better than the chord length method for the algorithm to carry out the parameterization for the sampling points. 展开更多
关键词 Analysis-aware modelling curve fitting Timoshenko beam spatial curve isogeometric analysis
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
12
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Measurement and Prediction of Insertion Force for the Mosquito Fascicle Penetrating into Human Skin 被引量:12
13
作者 X Q Kong C W Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期143-152,共10页
Mosquitoes are exceptional in their ability to pierce into human skin with a natural ultimate painless microneedle, named fascicle. Here the structure of the Aedes albopictus mosquito fascicle is obtained using a Scan... Mosquitoes are exceptional in their ability to pierce into human skin with a natural ultimate painless microneedle, named fascicle. Here the structure of the Aedes albopictus mosquito fascicle is obtained using a Scanning Electron Microscope (SEM), and the whole process of the fascicle inserting into human skin is observed using a high-speed video imaging technique. Direct measurements of the insertion force for mosquito fascicle to penetrate into human skin are reported. Results show that the mosquito uses a very low force (average 18 μN) to penetrate into the skin. This force is at least three orders of magnitude smaller than the reported lowest insertion force for an artificial microneedle with an ultra sharp tip to insert into the human skin. In order to understand the piercing mechanism of mosquito fascicle tip into human multilayer skin tissue, a numerical simulation is conducted to analyze the insertion process using a nonlinear finite element method. A good agreement occurs between the numerical results and the experimental measurements. 展开更多
关键词 BIOMIMETIC MICRONEEDLE MOSQUITO FASCICLE mechanics penetration
下载PDF
Optimum design of hierarchical stiffened shells for low imperfection sensitivity 被引量:13
14
作者 Bo Wang Peng Hao +5 位作者 Gang Li Jia-Xin Zhang Kai-Fan Du Kuo Tian Xiao-Jun Wang Xiao-Han Tang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期391-402,共12页
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and... A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles. 展开更多
关键词 Hierarchical stiffened shell Imperfection sensi-tivity COLLAPSE Optimization
下载PDF
Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously 被引量:10
15
作者 Kai Long Xuan Wang Xianguang Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期315-326,共12页
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal ... The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the loadcarrying capabilities and the thermal insulation properties.The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved. 展开更多
关键词 Concurrent design Topology optimization HOMOGENIZATION Thermal insulation Nodal displacement Independent continuous mapping method
下载PDF
A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials 被引量:6
16
作者 Yongcun Zhang Shipeng Shang Shutian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期368-381,共14页
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solutio... Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials. 展开更多
关键词 Asymptotic homogenization method Coefficient of thermal expansion Periodic composite material Finite element method
下载PDF
Springback Prediction and Optimization of Variable Stretch Force Trajectory in Three-dimensional Stretch Bending Process 被引量:6
17
作者 TENG Fei ZHANG Wanxi +1 位作者 LIANG Jicai GAO Song 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1132-1140,共9页
Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback predicti... Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression(SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments(DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization(PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback. 展开更多
关键词 springback prediction support vector regression(SVR) response surface particle swarm optimization(PSO)
下载PDF
Lateral Vibration Behavior Analysis and TLD Vibration Absorption Design of the Soft Yoke Single-Point Mooring System 被引量:4
18
作者 LYU Bai-cheng WU Wen-hua +1 位作者 YAO Wei-an DU Yu 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期284-290,共7页
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in C... Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures. 展开更多
关键词 FPSO soft yoke mooring system vibration absorption TLD prototype monitoring system Bohai Bay
下载PDF
Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation 被引量:5
19
作者 Wei-An Yao Xiao-Fei Hu Feng Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期929-937,共9页
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d... This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method. 展开更多
关键词 Orthotropic plate Symplectic space Winklerelastic foundation Analytical solution
下载PDF
Combined approach for analysing evolutionary power spectra of a track-soil system under moving random loads 被引量:3
20
作者 Y.Zhao L.T.Si H.Ouyang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期674-690,共17页
The pseudo-excitation method combined with the integral transform method (PEM-ITM) is presented to investigate the ground vibration of a coupled track-soil system induced by moving random loads. Commonly in the track ... The pseudo-excitation method combined with the integral transform method (PEM-ITM) is presented to investigate the ground vibration of a coupled track-soil system induced by moving random loads. Commonly in the track model, the rail, sleepers, rail pads, and ballast are modelled as an infinite Euler beam, discretely distributed masses, discretely distributed vertical springs, and a viscoelastic layer, respectively. The soil is regarded as a homogenous isotropic half-space coupled with the track using the boundary condition at the surface of the ground. By introducing a pseudo-excitation, the random vibration analysis of the coupled system is converted into a harmonic analysis. The analytical form of evolutionary power spectral density responses of the simplified coupled track-soil system under a random moving load is derived in the frequency/wavenumber domain by PEM-ITM. In the numerical examples, the effects of different parameters, such as the moving speed, the soil properties, and the coherence of moving loads, on the ground response are investigated. 展开更多
关键词 Track-soil system MOVING random loads EVOLUTIONARY POWER spectrum Pseudo-excitation METHOD Integral transform METHOD Vibration transmission
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部