In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the earl...In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the early life history of chub mackerel plays a significant role in its recruitment,we developed an individual-based model to study the distribution,growth,and survival rate of chub mackerel larvae and juveniles in the ECS to improve our understanding of the chub mackerel population structure and recruitment.Our results show that as body length rapidly increases,the swimming capacity of chub mackerel larvae and juveniles improves quickly,and their spatial distribution depends more on their habitat conditions than the ocean currents.Correspondingly,the juveniles from the central and southern ECS spawning ground are scarcely recruited into the Japan/East Sea(JES)or the western Pacific Ocean,but a significant proportion of juveniles from the northern ECS spawning ground still enter the JES and there are exchanges between the stocks in the ECS and JES.Thus,it seems more reasonable to assess and manage the chub mackerels in the ECS and JES as a stock.The water temperature and ocean primary production in the ECS are two important factors influencing the chub mackerel habitat conditions and their spatial and temporal distribution are significantly different as the spawning time changes.Therefore,the spawning time and location play an important role in the growth and survival rate of the larvae and juveniles.Generally,when chub mackerel spawns at the southern ECS spawning ground in March,the larva and juvenile growth and survival rate is relatively high;as spawning time moves forward,higher growth and survival rates would be expected for the chub mackerel spawned coastward or northward.For specific spawning sites,early or delayed spawning will reduce the survival rate.展开更多
The dynamic coupling between the fluttering motions and hydrodynamic characteristics of codend is essential in understanding the trawl selectivity through fish response and the drag force acting on the whole trawl.Thi...The dynamic coupling between the fluttering motions and hydrodynamic characteristics of codend is essential in understanding the trawl selectivity through fish response and the drag force acting on the whole trawl.This study investigated the effect of towing speed,warp length,warp tension,and catch size on the fluttering motions of Antarctic krill trawl codend during net shooting,towing,and hauling by using sea trial data.The time-periodicity of codend oscillation was analyzed by the Morlet wavelet transform method.Results indicated that the period of codend oscillation was between 50 s and 90 s and showed an increasing trend with the warp tension but a decreased value at the towing stage.The coefficient amplitude of codend oscillation was between 0 and 4 at the net shooting and hauling stages,and between 0.2 and 0.6 at the towing stage.The amplitude of codend oscillation increased with the warp tension,towing speed,and catch size,but decreased with the increase of the warp length.In addition,the period of codend oscillation increased with the towing speed at the net shooting and hauling stages,but decreased at the towing stage.These results from codend fluttering motions can improve the understanding of fish behavior and gear shape that modify the hydrodynamic force on the codend instantaneously.展开更多
Accurately building the relationship between the oceanographic environment and the distribution of neon flying squid(Ommastrephes bartramii)is very important to understand the potential habitat pattern of O.bartramii....Accurately building the relationship between the oceanographic environment and the distribution of neon flying squid(Ommastrephes bartramii)is very important to understand the potential habitat pattern of O.bartramii.However,when building the prediction model of O.bartramii with traditional oceanographic variables(e.g.,chlorophyll a concentration(Chl a)and sea surface temperature(SST))from space-borne observations,part of the important spectrum characteristics of the oceanic surface could be masked by using the satellite data products directly.In this study,the neglected remote sensing information(i.e.,spectral remote sensing reflectance(Rrs)and brightness temperature(BT))is firstly incorporated to build the prediction model of catch per unit effort(CPUE)of O.bartramii from July to December during 2014–2018 in the Northwest Pacific Ocean.Results show that both the conventional oceanographic variables and the neglected remote sensing data are suitable for building the prediction model,whereas the overall root mean square error(RMSE)of the predicted CPUE of O.bartramii with the former is typically less accurate than that with the latter.Hence,the Rrs and BT could be a more suitable data source than the Chl a and SST to predict the distribution of O.bartramii,highlighting that the potential value of the neglected variables in understanding the habitat suitability of O.bartramii.展开更多
With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data sourc...With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data source to study the navigation char-acteristics of vessel groups.This study established an identification model to extract the fishing state and intensity information of fishing vessels,based on the AIS data of purse seine fishing vessels,combined with the variables of vessel position,speed and course.Expert experience,spatial statistics and data mining analysis methods were applied to establish the model,and the Western and Cen-tral Pacific Ocean areas were studied.The results showed that the overall accuracy of identification of the fishing state using Support Vector Machine method is higher,and the method has a good modeling effect.The spatial distribution characteristics of the vessels’fishing intensity based on AIS data showed a significant cluster distribution pattern.The obtained high-intensity fishing area can be used as a prediction of purse seine fishing grounds in the Western and Central Pacific areas.Through the processing and research of AIS data,this study provided important scientific support for the identification of fishing state of purse seine fishing vessels.The spatial fishing intensity of fishing vessels based on AIS data can also be used for the analysis of fishery resources and fishing grounds,and further serve the sustainable development of marine fisheries.展开更多
Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate threshol...Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate thresholds of sustainable fishing for fished stocks to estimate the potential loss of catch and revenue of global fisheries as a result of overexploitation during the period of 1950–2010 in 14 FAO fishing areas. About 35% of stocks in the global marine ocean have or had suffered from overexploitation at present. The global catch losses amounted to 332.8 million tonnes over 1950–2010, resulting in a direct economic loss of US$298.9 billion(constant 2005 US$).Unsustainable fishing caused substantial potential losses worldwide, especially in the northern hemisphere.Estimated potential losses due to overfishing for different groups of resources showed that the low-value but abundant small-medium pelagics made the largest contribution to the global catch loss, with a weight of 265.0 million tonnes. The geographic expansion of overfishing not only showed serial depletion of world's fishery resources, but also reflected how recent trends towards sustainability can stabilize or reverse catch losses.Reduction of global fishing capacity and changes in fishery management systems are necessary if the long-term sustainability of marine fisheries in the world is to be achieved.展开更多
Age, maturation and population structure of the Humboldt squid Dosidicus gigas were studied based on random sampling of the Chinese jigging fishery off the Peruvian Exclusive Economic Zones (EEZ) during 2008-2010. E...Age, maturation and population structure of the Humboldt squid Dosidicus gigas were studied based on random sampling of the Chinese jigging fishery off the Peruvian Exclusive Economic Zones (EEZ) during 2008-2010. Estimated ages ranged from 144 to 633 days, confirming that the squid is a short-lived species with longevity no longer than 2 years. Occurrence of mature females and hatching in each month indicated that Humboldt squid spawned year-round. Back-calculated hatching dates for the samples were from January 22^nd, 2008 to April 22nd, 2010 with a peak between January and March. Two size-based and two hatching date-based populations could be defined from mantle length (ML) at maturity and back-calculated hatching dates, respectively. Females matured at a larger size than males, and there was a significant difference in ML at maturity between the two hatching groups (P〈0.05). The waters adjacent to 1 l^S off the Peruvian EEZ may be a potential spawning ground. This study shows the complexity of the population structure and large variability in key life history parameters in the Humboldt squid off the Peruvian EEZ, which should be considered in the assessment and management of this important resource.展开更多
The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic...The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continu- ously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interac- tion between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including E1 Nifio, La Nifia, Kuroshio, Oyashio and Pacific Decadal Oscillation (PDO), as well as regional environmental variables such as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), chlorophyll-a (Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events (e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions (e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes (e.g., PDO). An unstructured-grid finite- volume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceano- graphic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relation- ship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.展开更多
Although many studies on the fishery biology of jumbo flying squid, Dosidicus gigas, have been conducted in the coastal areas within Exclusive Economic Zones (EEZs) of various countries due to its commercial and eco...Although many studies on the fishery biology of jumbo flying squid, Dosidicus gigas, have been conducted in the coastal areas within Exclusive Economic Zones (EEZs) of various countries due to its commercial and ecological importance, limited biological information is available from waters outside these EEZs. In this paper, we examined D. gigas fishery biology from waters outside Chilean, Peruvian and Costa Rican EEZs, based on the fishery data collected by Chinese jigging vessels during 2006 to 2010. The dominant mantle lengths olD. gigas were 350-450 mm, 250-400 mm and 250-350 mm outside Chilean, Peruvian and Costa Rican EEZs, respectively. Size structure analysis show that a medium-sized group existed mostly in the waters outside the Chilean and Peruvian EEZs, whereas a small-sized group occurred mainly in the waters outside the Costa Rican EEZ. The longevity of the squid outside the Costa Rican EEZ was less than 10 months, while most of those outside Chilean and Peruvian EEZs were about 1-1.5 years and very few large individuals were 1.5-2 years old. A higher percentage of mature individuals existed outside Costa Rican EEZ implying the region as a potential spawning ground, while lower proportions of mature squid outside the Peruvian and Chilean EEZs indicated that spawning may be occurring outside our study area. Spatial differences in sizes at maturity of the squid are thought to be result from different environmental factors especially different temperature and nutrition among the three areas. Stomach-content analysis showed that cannibalism was important in the diet of D. gigas. Stress generated by jigging may increase the incidence of cannibalism.展开更多
Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacifi...Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.展开更多
The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and i...The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.展开更多
Two predominant currents, the warm Kuroshio Current and the cold Oyashio Current, meet in the North- west Pacific Ocean. The dynamics of physical oceanographic structures in this region, including frontal zones and me...Two predominant currents, the warm Kuroshio Current and the cold Oyashio Current, meet in the North- west Pacific Ocean. The dynamics of physical oceanographic structures in this region, including frontal zones and meandering eddies, result in a highly productive habitat that serves as a favorable feeding ground for various commercially important species. Neon flying squid, Ommastrephes bartramii, is an im- portant oceanic squid, which is widely distributed in the North Pacific Ocean. Based on the catch data col- lected by Chinese squid jigging fleets and relevant environmental data, including sea surface temperature (SST) and fronts (represented by gradients of SST and thermocline) during 1998-2009, the variations of oceanic fronts and their influence on the fishing grounds of O. bartramii were evaluated, and the differ- ences in distribution of fishing grounds of O. bartramii in 2000 and 2002 were compared by describing the differences in vertical temperature between 0-300 m. It was found that the preferred horizontal tem- perature gradient of SST for O. bartramii tended to be centered at 0.01-0.02~C/nm, which attracted nearly 80% of the total fishing effort, and the preferred horizontal temperature gradients at the 50 m and 105 m layers were mainly located at 0.01-0.03~C/nm, which accounted for more than 70% of the total fishing effort during August-October. The preferred vertical temperature gradient within the 0-50 m layer for O. bartramii tended to be centered at 0.15-0.25~C/m during August and September and at 0.10-0.15~C/m in October, implying that the mixed surface layer was distributed at depths of 0-50 m. It was concluded that the vertical temperature gradient was more important than the horizontal temperature gradient in playing a role in forming the fishing ground. The results improved our understanding of the spatial dynamics of the 0. bartramii fishery.展开更多
Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-s...Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.展开更多
During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning a...During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning and fishing grounds. To better understand how squid recruitment and abundance were infuenced by ocean environmental conditions, biological and physical environmental variables including sea surface temperature (SST), SST anomaly (SSTA), chlorophyll a (Chl a) concentration and the Kuroshio Current were examined during years with the highest (1999), intermediate (2005), and lowest (2009) catches. Catch per unit effort (CPUE) of the squid-jigging vessels was used as an indicator of squid abundance. The results indicated that high SST and Chl a concentration on the spawning ground in 1999 resulted in favorable incubation and feeding conditions for squid recruitment. Whereas the suitable spawning zone (SSZ) in 2009 shifted southward and coincided with low SST and Chl a concentration, resulting in a reduction in the squid recruitment. The small difference of SSZ area in the three years suggested the SSZ provided limited influences on the variability in squid recruitment. Furthermore, high squid abundance in 1999 and 2005 was associated with warm SSTA on the fishing ground. While the cool SSTA on the fishing ground in 2009 contributed to adverse habitat for the squid, leading to extremely low abundance. It was inferred that strengthened intensity of the Kuroshio force generally yielded favorable environmental conditions for O. bartramii. Future research are suggested to focus on the fundamental research oil the early life stage of O. bartramii and mechanism of how the ocean-climate variability affects the squid abundance and spatial distribution by coupling physical model with squid biological process to explore transport path and abundance distribution.展开更多
The generalized linear model (GLM) and generalized additive model (GAM) were applied to the standardization of catch per unit effort (CPUE) for Chilean jack mackerel from Chinese factory trawl fishing fleets in ...The generalized linear model (GLM) and generalized additive model (GAM) were applied to the standardization of catch per unit effort (CPUE) for Chilean jack mackerel from Chinese factory trawl fishing fleets in the Southeast Pacific Ocean from 2001 to 2010 by removing the operational, environmental, spatial and temporal impacts. A total of 9 factors were selected to build the GLM and GAM, i.e., Year, Month, Vessel, La Nifia and E1 Nifio events (ELE), Latitude, Longitude, Sea surface temperature (SST), SST anomaly (SSTA), Nino3.4 index and an interaction term between Longitude and Latitude. The first 5 factors were significant components in the GLM, which in combination explained 27.34% of the total variance in nominal CPUE. In the stepwise GAM, all factors explained 30.78% of the total variance, with Month, Year and Vessel as the main factors influencing CPUE. The higher CPUE occurred during the period April to July at a SST range of 12-15℃ and a SSTA range of 0.2-1.0℃. The CPUE was significantly higher in normal years compared with that in La Nifia and E1 Nifio years. The abundance of Chilean jack mackerel declined during 2001 and 2010, with an increase in 2007. This work provided the relative abundance index of Chilean jack mackerel for stock as- sessment by standardizing catch and effort data of Chinese trawl fisheries and examined the influence of temporal, spatial, environ- mental and fisheries operational factors on Chilean jack mackerel CPUE.展开更多
A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and ve...A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and vertical shear of current coefficieney, wind speed, hook position code, sine of wind angle, sine of angle of attack and weight of messenger weight. We identified the hook depth models by the analysis of covariance with a general linear model. The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area; the surface current effect on the hook depth can be ignored; the equato- rial undercurrent is the key factor for the hook depth in Indian Ocean; and there is a negative correlation between the hook depth and vertical shear of current and angle of attack. It was also found that the deeper the hook was set, the higher hook depth shoaling was. The proposed model improves the accuracy of the prediction of hook depth, which can be used to estimate the vertical distribution of pelagic fish in water column.展开更多
The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) c...The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.展开更多
With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°...With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.展开更多
Stable isotopes(δ^(13)C and δ^(15)N) have been widely used to track cephalopod habitat, migration and trophic structure. In this study, we analyzed the δ^(13)C and δ^(15)N values in 245 Dosidicus gigas beaks colle...Stable isotopes(δ^(13)C and δ^(15)N) have been widely used to track cephalopod habitat, migration and trophic structure. In this study, we analyzed the δ^(13)C and δ^(15)N values in 245 Dosidicus gigas beaks collected during 2009–2010 and in 2013 off Peruvian Exclusive Economic Zone(EEZ) waters. High individual variation in beak stable isotopes was shown with values ranging from-19.4‰ to-15.8‰ for δ^(13)C and from 5.0‰ to 15.1‰ for δ^(15)N. A generalized additive model(GAM) showed that latitude, mantle length and distance to shelf break significantly described the isotope variation with deviance ranging from 16.6% in δ^(13)C to 36.3% in δ^(15)N. Large variability in beak δ^(13)C values for a given size and sampling station indicated that D. gigas off the Peruvian EEZ waters migrate in different ways when they occupy a large range of habitats for their ontogeny. Low baseline δ^(15)N values suggested that spatial changes in diet trophic level may be the main determinative factor in beak δ^(15)N variation. We conclude that high variability in beak δ^(15)N values for a given set of explanatory variables indicated that D. gigas is an opportunistic predator with highly diverse dietary habitats. This study further develops our knowledge of the life history of D. gigas in such a highly dynamic region.展开更多
As apex predators, sharks are of ecological and conservation importance in marine ecosystems. In this study, trophic positions of sharks were estimated using stable isotope ratios of carbon and nitrogen for five repre...As apex predators, sharks are of ecological and conservation importance in marine ecosystems. In this study, trophic positions of sharks were estimated using stable isotope ratios of carbon and nitrogen for five representative species caught by the Chinese longline fleet in the mid-east Pacific, i.e., the blue shark (Prionace glauca), the bigeye thresher shark (Alopias superciliosus), the silky shark (Carcharhinus falciformis), the scalloped hammerhead (Sphyrna lewini), and the oceanic whitetip shark (Car-charhinus longimanus). Of these species, oceanic whitetip shark has the lowest trophic level and mean 815N value (3.9 and 14.93%o± 0.84%o), whereas bigeye thresher shark has the highest level/values (4.5 and 17.02%o±1.21%o, respectively). The bigeye thresher shark has significantly higher 515N value than other shark species, indicating its higher trophic position. The blue shark and oceanic whitetip shark has significantly higher 813C values than bigeye thresher shark, silky shark and scalloped hammerhead, possibly due to different diets and/or living habitats. The stable isotope data and stomach content data are highly consistent, suggesting that sta-ble isotope analysis supplements traditional feeding ecology study of sharks, and thus contributes to understanding their trophic linkage.展开更多
Beak of cephalopod is an important hard tissue. Understanding the morphology of beak can yield critical infor- mation on the role of cephalopods in the ecosystem. The south patagonic stock of the Argentine shortfin sq...Beak of cephalopod is an important hard tissue. Understanding the morphology of beak can yield critical infor- mation on the role of cephalopods in the ecosystem. The south patagonic stock of the Argentine shortfin squid, Illex argentinus, is not only one of the most important fishing targets, but also one of the most important species in the marine eco-system of the southwest Atlantic. A total of 430 samples ofL argentinus, including 229 females 103-346mm in mantle length (ML) and 201 males 140-298mm in ML, were collected from the area off the Exclusive Economic Zone of Argentinean waters by Chinese squid jigging vessels during February to May 2007. The morphology of their beaks was evaluated. The relationships between beak morphological variables and ML differed significantly among males and females. They could be best described by loga- rithmic functions for females and linear functions for males except for upper wing length (UWL) and lower rostrum length (LRL), which followed exponential functions in their relationships with ML. The results showed the sexual dimorphism in the relationship between ML and beak morphology for the south patagonic stock ofL argentinus. However, no significant differ- ence was found between males and females in the relationships of beak morphological variables (except for UWL) versus body weight (BW), suggesting that the relationship between beak morphological variables and BW can be used for estimating the biomass consumed by their predators.展开更多
基金Supported by the National Natural Science Foundation of China(No.32072981)。
文摘In the East China Sea(ECS),chub mackerel Scomber japonicus constitutes an important coastal-pelagic fishery resource that is mainly exploited by Chinese,Japanese,and Korean light-purse seine fisheries.Because the early life history of chub mackerel plays a significant role in its recruitment,we developed an individual-based model to study the distribution,growth,and survival rate of chub mackerel larvae and juveniles in the ECS to improve our understanding of the chub mackerel population structure and recruitment.Our results show that as body length rapidly increases,the swimming capacity of chub mackerel larvae and juveniles improves quickly,and their spatial distribution depends more on their habitat conditions than the ocean currents.Correspondingly,the juveniles from the central and southern ECS spawning ground are scarcely recruited into the Japan/East Sea(JES)or the western Pacific Ocean,but a significant proportion of juveniles from the northern ECS spawning ground still enter the JES and there are exchanges between the stocks in the ECS and JES.Thus,it seems more reasonable to assess and manage the chub mackerels in the ECS and JES as a stock.The water temperature and ocean primary production in the ECS are two important factors influencing the chub mackerel habitat conditions and their spatial and temporal distribution are significantly different as the spawning time changes.Therefore,the spawning time and location play an important role in the growth and survival rate of the larvae and juveniles.Generally,when chub mackerel spawns at the southern ECS spawning ground in March,the larva and juvenile growth and survival rate is relatively high;as spawning time moves forward,higher growth and survival rates would be expected for the chub mackerel spawned coastward or northward.For specific spawning sites,early or delayed spawning will reduce the survival rate.
基金This study was supported by the National Natural Science Foundation of China(No.31902426)the Shanghai Sailing Program(No.19YF1419800)the Special Project for Exploitation and Utilization of Antarctic Biological Resources of the Ministry of Agriculture and Rural Affairs(No.D-8002-18-0097).
文摘The dynamic coupling between the fluttering motions and hydrodynamic characteristics of codend is essential in understanding the trawl selectivity through fish response and the drag force acting on the whole trawl.This study investigated the effect of towing speed,warp length,warp tension,and catch size on the fluttering motions of Antarctic krill trawl codend during net shooting,towing,and hauling by using sea trial data.The time-periodicity of codend oscillation was analyzed by the Morlet wavelet transform method.Results indicated that the period of codend oscillation was between 50 s and 90 s and showed an increasing trend with the warp tension but a decreased value at the towing stage.The coefficient amplitude of codend oscillation was between 0 and 4 at the net shooting and hauling stages,and between 0.2 and 0.6 at the towing stage.The amplitude of codend oscillation increased with the warp tension,towing speed,and catch size,but decreased with the increase of the warp length.In addition,the period of codend oscillation increased with the towing speed at the net shooting and hauling stages,but decreased at the towing stage.These results from codend fluttering motions can improve the understanding of fish behavior and gear shape that modify the hydrodynamic force on the codend instantaneously.
基金The National Key Research and Development Program of China under contract No.2019YFD0901404the National Natural Science Foundation of China under contract No.42174016+1 种基金the Shanghai Science and Technology Innovation Action Plan under contract No.19DZ1207502the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources under contract No.QNHX2324。
文摘Accurately building the relationship between the oceanographic environment and the distribution of neon flying squid(Ommastrephes bartramii)is very important to understand the potential habitat pattern of O.bartramii.However,when building the prediction model of O.bartramii with traditional oceanographic variables(e.g.,chlorophyll a concentration(Chl a)and sea surface temperature(SST))from space-borne observations,part of the important spectrum characteristics of the oceanic surface could be masked by using the satellite data products directly.In this study,the neglected remote sensing information(i.e.,spectral remote sensing reflectance(Rrs)and brightness temperature(BT))is firstly incorporated to build the prediction model of catch per unit effort(CPUE)of O.bartramii from July to December during 2014–2018 in the Northwest Pacific Ocean.Results show that both the conventional oceanographic variables and the neglected remote sensing data are suitable for building the prediction model,whereas the overall root mean square error(RMSE)of the predicted CPUE of O.bartramii with the former is typically less accurate than that with the latter.Hence,the Rrs and BT could be a more suitable data source than the Chl a and SST to predict the distribution of O.bartramii,highlighting that the potential value of the neglected variables in understanding the habitat suitability of O.bartramii.
基金supported by the Project of Developing of Tuna Fishing Grounds Forecasting(No.ZD 202101-06).
文摘With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data source to study the navigation char-acteristics of vessel groups.This study established an identification model to extract the fishing state and intensity information of fishing vessels,based on the AIS data of purse seine fishing vessels,combined with the variables of vessel position,speed and course.Expert experience,spatial statistics and data mining analysis methods were applied to establish the model,and the Western and Cen-tral Pacific Ocean areas were studied.The results showed that the overall accuracy of identification of the fishing state using Support Vector Machine method is higher,and the method has a good modeling effect.The spatial distribution characteristics of the vessels’fishing intensity based on AIS data showed a significant cluster distribution pattern.The obtained high-intensity fishing area can be used as a prediction of purse seine fishing grounds in the Western and Central Pacific areas.Through the processing and research of AIS data,this study provided important scientific support for the identification of fishing state of purse seine fishing vessels.The spatial fishing intensity of fishing vessels based on AIS data can also be used for the analysis of fishery resources and fishing grounds,and further serve the sustainable development of marine fisheries.
基金The National Natural Science Foundation of China under contract Nos NSFC41306127 and NSFC41276156the Funding Program for Outstanding Dissertations in Shanghai Ocean University+1 种基金the Funding Scheme for Training Young Teachers in Shanghai Colleges and Shanghai Leading Academic Discipline Project(Fisheries Discipline)the involvement of Y.Chen was supported by the SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate thresholds of sustainable fishing for fished stocks to estimate the potential loss of catch and revenue of global fisheries as a result of overexploitation during the period of 1950–2010 in 14 FAO fishing areas. About 35% of stocks in the global marine ocean have or had suffered from overexploitation at present. The global catch losses amounted to 332.8 million tonnes over 1950–2010, resulting in a direct economic loss of US$298.9 billion(constant 2005 US$).Unsustainable fishing caused substantial potential losses worldwide, especially in the northern hemisphere.Estimated potential losses due to overfishing for different groups of resources showed that the low-value but abundant small-medium pelagics made the largest contribution to the global catch loss, with a weight of 265.0 million tonnes. The geographic expansion of overfishing not only showed serial depletion of world's fishery resources, but also reflected how recent trends towards sustainability can stabilize or reverse catch losses.Reduction of global fishing capacity and changes in fishery management systems are necessary if the long-term sustainability of marine fisheries in the world is to be achieved.
基金Supported by the National Natural Science Foundation of China (No.41276156)the National High Technology Research and Development Program of China (863 Program) (No. 2012AA092303)+3 种基金the Innovation Program of Shanghai Municipal Education Commission (No. 13YZ091)Shanghai Leading Academic Disciplin Projectsupported by National Distant-Water Fisheries Engineering Research Center, and Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of AgricultureYong Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar Program
文摘Age, maturation and population structure of the Humboldt squid Dosidicus gigas were studied based on random sampling of the Chinese jigging fishery off the Peruvian Exclusive Economic Zones (EEZ) during 2008-2010. Estimated ages ranged from 144 to 633 days, confirming that the squid is a short-lived species with longevity no longer than 2 years. Occurrence of mature females and hatching in each month indicated that Humboldt squid spawned year-round. Back-calculated hatching dates for the samples were from January 22^nd, 2008 to April 22nd, 2010 with a peak between January and March. Two size-based and two hatching date-based populations could be defined from mantle length (ML) at maturity and back-calculated hatching dates, respectively. Females matured at a larger size than males, and there was a significant difference in ML at maturity between the two hatching groups (P〈0.05). The waters adjacent to 1 l^S off the Peruvian EEZ may be a potential spawning ground. This study shows the complexity of the population structure and large variability in key life history parameters in the Humboldt squid off the Peruvian EEZ, which should be considered in the assessment and management of this important resource.
基金financially supported by the National High-Tech R&D Program(863 Program)of China(2012AA092303)the Project of Shanghai Science and Technology Innovation(12231203900)+3 种基金the Industrialization Program of National Development and Reform Commission(2159999)the National Key Technologies R&D Program of China(2013BAD13B00)the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean University
文摘The neon flying squid (Ommastrephes bartramii) is a short-lived opporttmistic species widely distributed in subtropical and temperate waters in the North Pacific Ocean. The life cycle of O. bartramii from planktonic eggs to nektonic adults is closely linked to oceanographic conditions. The fluctuations in O. bartramii abundance and distribution tend to increase and widen continu- ously due to the heavy influences of ocean-climate events on various spatio-temporal scales. In this study, we reviewed the interac- tion between O. bartramii and oceanography variability in the North Pacific with respect to large-scale climatic-oceanic phenomena including E1 Nifio, La Nifia, Kuroshio, Oyashio and Pacific Decadal Oscillation (PDO), as well as regional environmental variables such as sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), chlorophyll-a (Chl-a) concentration, and plankton density. The population dynamics of O. bartramii is mediated mainly by meso- and large-scale climatic-oceanic events (e.g., Kuroshio and Oyashio Currents) rather than other local environmental conditions (e.g., SST and Chl-a concentration), because all of the oceanographic influences are imposed on the context of large-scale climate changes (e.g., PDO). An unstructured-grid finite- volume coastal ocean model coupled with an individual-based model is proposed to simulate relevant physical-biological oceano- graphic processes for identifying ocean-climate influence and predicting O. bartramii distribution and abundance in the North Pacific. Future research needs to be focused on improving the knowledge about early life history of O. bartramii and evaluating the relation- ship between marine physical environment and two separate passive drifting life stages of O. bartramii including free-floating eggs and planktonic paralarvae.
基金Supported by the National Natural Science Foundation of China(No.NSFC41276156)Innovation Program of Shanghai Municipal Education Commission(No.13YE091)+5 种基金Industrialization Project of National Development and Reform Commission(No.2159999)Project of Shanghai Science and Technology Commission(No.12231203900)National High Technology Research and Development Program of China(863 Program)(No.2012AA092303)Shanghai Leading Academic Discipline Project(Fisheries Discipline)National Distant-Water Fisheries Engineering Research Centerthe Scientific Observing and Experimental Station of Oceanic Fishery Resources,Ministry of Agriculture
文摘Although many studies on the fishery biology of jumbo flying squid, Dosidicus gigas, have been conducted in the coastal areas within Exclusive Economic Zones (EEZs) of various countries due to its commercial and ecological importance, limited biological information is available from waters outside these EEZs. In this paper, we examined D. gigas fishery biology from waters outside Chilean, Peruvian and Costa Rican EEZs, based on the fishery data collected by Chinese jigging vessels during 2006 to 2010. The dominant mantle lengths olD. gigas were 350-450 mm, 250-400 mm and 250-350 mm outside Chilean, Peruvian and Costa Rican EEZs, respectively. Size structure analysis show that a medium-sized group existed mostly in the waters outside the Chilean and Peruvian EEZs, whereas a small-sized group occurred mainly in the waters outside the Costa Rican EEZ. The longevity of the squid outside the Costa Rican EEZ was less than 10 months, while most of those outside Chilean and Peruvian EEZs were about 1-1.5 years and very few large individuals were 1.5-2 years old. A higher percentage of mature individuals existed outside Costa Rican EEZ implying the region as a potential spawning ground, while lower proportions of mature squid outside the Peruvian and Chilean EEZs indicated that spawning may be occurring outside our study area. Spatial differences in sizes at maturity of the squid are thought to be result from different environmental factors especially different temperature and nutrition among the three areas. Stomach-content analysis showed that cannibalism was important in the diet of D. gigas. Stress generated by jigging may increase the incidence of cannibalism.
基金Supported by the Program for New Century Excellent Talents in University (No.NCET-06-0437)the National High Technology Research and Development Program of China (863 Program) (No.2007AA092201+2 种基金2007AA092202)Shanghai Leading Academic Discipline Project (No.S30702)Doctorship Fund of Shanghai Ocean University (No.06-326)
文摘Generalized linear models (GLM) and generalized additive models (GAM) were used to standardize catch per unit fishing effort (CPUE) of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Three groups of variables were considered in the standardization: spatial variables (longitude and latitude), temporal variables (year and month) and environmental variables, including sea surface temperature (SST), sea surface salinity (SSS) and sea level height (SLH). CPUE was treated as the dependent variable and its error distribution was assumed to be log-normal in each model. The model selections of GLM and GAM were based on the finite sample-corrected Akaike information criterion (AICC) and pseudo-coefficient (Pcf) combined P-value, respectively. Both GAM and GLM analysis showed that the month was the most important variable affecting CPUE and could explain 21.3% of variability in CPUE while other variables only explained 8.66%. The interaction of spatial and temporal variables weakly influenced the CPUE. Moreover, spatio-temporal factors may be more important in influencing the CPUE of this squid than environmental variables. The standardized and nominal CPUEs were similar and had the same trends in spatio-temporal distribution, but the standardized CPUE values tended to be smaller than the nominal CPUE. The CPUE tended to have much higher monthly variation than annual variations and their values increased with month. The CPUE became higher with increasing latitude-high CPUE usually occurred in 145°E-148°E and 149°E-162°E. The CPUE was higher when SST was 14-21℃ and the SLH from -22 cm to -18 cm. In this study, GAM tended to be more suitable than GLM in analysis of CPUE.
基金Supported by the PhD Programs Foundation of Ministry of Education of China (No. 20093104110002)the National High Technology Research and Development Program of China (863 Program) (Nos. 2007AA092201, 2007AA092202)+2 种基金the National Natural Science Foundation (No. NSFC40876090)the Shanghai Leading Academic Discipline Project (No. S30702)Y. Chen's involvement in the project was partially supported by the Shanghai Dongfang Scholar Program
文摘The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.
基金The National High-Tech R&D Program of China(863 Program)under contract Nos 2012AA092301 and 2012AA092303the Project of Shanghai Science and Technology Innovation under contract No.12231203900+1 种基金the Industrialization Program of National Development and Reform Commission under contract No.2159999the Shanghai Universities First-class Disciplines Project(Fisheries)"
文摘Two predominant currents, the warm Kuroshio Current and the cold Oyashio Current, meet in the North- west Pacific Ocean. The dynamics of physical oceanographic structures in this region, including frontal zones and meandering eddies, result in a highly productive habitat that serves as a favorable feeding ground for various commercially important species. Neon flying squid, Ommastrephes bartramii, is an im- portant oceanic squid, which is widely distributed in the North Pacific Ocean. Based on the catch data col- lected by Chinese squid jigging fleets and relevant environmental data, including sea surface temperature (SST) and fronts (represented by gradients of SST and thermocline) during 1998-2009, the variations of oceanic fronts and their influence on the fishing grounds of O. bartramii were evaluated, and the differ- ences in distribution of fishing grounds of O. bartramii in 2000 and 2002 were compared by describing the differences in vertical temperature between 0-300 m. It was found that the preferred horizontal tem- perature gradient of SST for O. bartramii tended to be centered at 0.01-0.02~C/nm, which attracted nearly 80% of the total fishing effort, and the preferred horizontal temperature gradients at the 50 m and 105 m layers were mainly located at 0.01-0.03~C/nm, which accounted for more than 70% of the total fishing effort during August-October. The preferred vertical temperature gradient within the 0-50 m layer for O. bartramii tended to be centered at 0.15-0.25~C/m during August and September and at 0.10-0.15~C/m in October, implying that the mixed surface layer was distributed at depths of 0-50 m. It was concluded that the vertical temperature gradient was more important than the horizontal temperature gradient in playing a role in forming the fishing ground. The results improved our understanding of the spatial dynamics of the 0. bartramii fishery.
基金supported by the National 863 project (2007AA092201 2007AA092202)+4 种基金National Development and Reform Commission Project (2060403)"Shu Guang" Project (08GG14) from Shanghai Municipal Education CommissionShanghai Leading Academic Discipline Project (Project S30702)supported by the National Distantwater Fisheries Engineering Research Center, and Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture, ChinaYong Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar Program
文摘Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.
基金The National High-Tech R&D Program(863 Program)of China under contract No.2012AA092303the Project of Shanghai Science and Technology Innovation under contract No.12231203900+4 种基金the Industrialization Program of National Development and Reform Commission under contract No.2159999the National Key Technologies R&D Program of China under contract No.2013BAD13B00the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean Universitythe Shanghai Ocean University International Center for Marine Studies
文摘During 1995-2011, annual production of winter-spring cohort of Ommastrephes bartramii for Chinese squidjigging fishery has greatly fluctuated, which is closely related to the environmental conditions on the spawning and fishing grounds. To better understand how squid recruitment and abundance were infuenced by ocean environmental conditions, biological and physical environmental variables including sea surface temperature (SST), SST anomaly (SSTA), chlorophyll a (Chl a) concentration and the Kuroshio Current were examined during years with the highest (1999), intermediate (2005), and lowest (2009) catches. Catch per unit effort (CPUE) of the squid-jigging vessels was used as an indicator of squid abundance. The results indicated that high SST and Chl a concentration on the spawning ground in 1999 resulted in favorable incubation and feeding conditions for squid recruitment. Whereas the suitable spawning zone (SSZ) in 2009 shifted southward and coincided with low SST and Chl a concentration, resulting in a reduction in the squid recruitment. The small difference of SSZ area in the three years suggested the SSZ provided limited influences on the variability in squid recruitment. Furthermore, high squid abundance in 1999 and 2005 was associated with warm SSTA on the fishing ground. While the cool SSTA on the fishing ground in 2009 contributed to adverse habitat for the squid, leading to extremely low abundance. It was inferred that strengthened intensity of the Kuroshio force generally yielded favorable environmental conditions for O. bartramii. Future research are suggested to focus on the fundamental research oil the early life stage of O. bartramii and mechanism of how the ocean-climate variability affects the squid abundance and spatial distribution by coupling physical model with squid biological process to explore transport path and abundance distribution.
基金co-funded by the National High Technology Research and Development program of China(No.2012AA092301)the Agriculture Science Technology Achievement Transformation Fund(No.2010C00001)the Project of Fishery Exploration in High Seas of the Ministry of Agriculture of China(2010–2011)
文摘The generalized linear model (GLM) and generalized additive model (GAM) were applied to the standardization of catch per unit effort (CPUE) for Chilean jack mackerel from Chinese factory trawl fishing fleets in the Southeast Pacific Ocean from 2001 to 2010 by removing the operational, environmental, spatial and temporal impacts. A total of 9 factors were selected to build the GLM and GAM, i.e., Year, Month, Vessel, La Nifia and E1 Nifio events (ELE), Latitude, Longitude, Sea surface temperature (SST), SST anomaly (SSTA), Nino3.4 index and an interaction term between Longitude and Latitude. The first 5 factors were significant components in the GLM, which in combination explained 27.34% of the total variance in nominal CPUE. In the stepwise GAM, all factors explained 30.78% of the total variance, with Month, Year and Vessel as the main factors influencing CPUE. The higher CPUE occurred during the period April to July at a SST range of 12-15℃ and a SSTA range of 0.2-1.0℃. The CPUE was significantly higher in normal years compared with that in La Nifia and E1 Nifio years. The abundance of Chilean jack mackerel declined during 2001 and 2010, with an increase in 2007. This work provided the relative abundance index of Chilean jack mackerel for stock as- sessment by standardizing catch and effort data of Chinese trawl fisheries and examined the influence of temporal, spatial, environ- mental and fisheries operational factors on Chilean jack mackerel CPUE.
基金funded by Ministry of Agriculture of China under Project of Fishery Exploration in High Seasin 2006 (No. Z06-43)the National High Technology Research and Development Program of China (No. 2012AA092302)+1 种基金Specialized research fund for the doctoral program of higher education (No. 20113104110004)Shanghai Municipal Education Commission Innovation Project (No. 12ZZ168)
文摘A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery. We determined the relationship between hook depth and vertical shear of current coefficieney, wind speed, hook position code, sine of wind angle, sine of angle of attack and weight of messenger weight. We identified the hook depth models by the analysis of covariance with a general linear model. The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area; the surface current effect on the hook depth can be ignored; the equato- rial undercurrent is the key factor for the hook depth in Indian Ocean; and there is a negative correlation between the hook depth and vertical shear of current and angle of attack. It was also found that the deeper the hook was set, the higher hook depth shoaling was. The proposed model improves the accuracy of the prediction of hook depth, which can be used to estimate the vertical distribution of pelagic fish in water column.
基金Supported by the National Natural Science Foundation of China(No.41406146)the Laboratory for Marine Fisheries Science and Food Production Processes at Qingdao National Laboratory for Marine Science and Technology of China(No.2017-1A02)the Shanghai Universities First-class Disciplines Project-Fisheries(A)
文摘The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.
基金Supported by the National Natural Science Foundation of China(Nos.41406146,41476129)the Natural Science Foundation of Shanghai Municipality(No.13ZR1419300)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20123104120002)the Shanghai Universities First-Class Disciplines Project-Fisheries(A)
文摘With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.
基金sponsored by the Shanghai Pujiang Program (No. 18PJ1404100)the National Natural Science Foundation of China (Nos. 41306127 and 41276156)
文摘Stable isotopes(δ^(13)C and δ^(15)N) have been widely used to track cephalopod habitat, migration and trophic structure. In this study, we analyzed the δ^(13)C and δ^(15)N values in 245 Dosidicus gigas beaks collected during 2009–2010 and in 2013 off Peruvian Exclusive Economic Zone(EEZ) waters. High individual variation in beak stable isotopes was shown with values ranging from-19.4‰ to-15.8‰ for δ^(13)C and from 5.0‰ to 15.1‰ for δ^(15)N. A generalized additive model(GAM) showed that latitude, mantle length and distance to shelf break significantly described the isotope variation with deviance ranging from 16.6% in δ^(13)C to 36.3% in δ^(15)N. Large variability in beak δ^(13)C values for a given size and sampling station indicated that D. gigas off the Peruvian EEZ waters migrate in different ways when they occupy a large range of habitats for their ontogeny. Low baseline δ^(15)N values suggested that spatial changes in diet trophic level may be the main determinative factor in beak δ^(15)N variation. We conclude that high variability in beak δ^(15)N values for a given set of explanatory variables indicated that D. gigas is an opportunistic predator with highly diverse dietary habitats. This study further develops our knowledge of the life history of D. gigas in such a highly dynamic region.
基金Li Yunkai was supported by the National Natural Science Foundation of China (No.41206124)Ph.D.Programs Foundation of Ministry of Education of China (No.201 23104120001)+3 种基金the ‘Chen Guang’ Project of Shanghai Municipal Education Commission (No.D8004-10-0206)the Shanghai Education Development Foundation (No.B-8102-10-0084)Zhu Jiangfeng and Dai Xiaojie were supported by the National Natural Science Foundation of China (No.41106118)the Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture, China
文摘As apex predators, sharks are of ecological and conservation importance in marine ecosystems. In this study, trophic positions of sharks were estimated using stable isotope ratios of carbon and nitrogen for five representative species caught by the Chinese longline fleet in the mid-east Pacific, i.e., the blue shark (Prionace glauca), the bigeye thresher shark (Alopias superciliosus), the silky shark (Carcharhinus falciformis), the scalloped hammerhead (Sphyrna lewini), and the oceanic whitetip shark (Car-charhinus longimanus). Of these species, oceanic whitetip shark has the lowest trophic level and mean 815N value (3.9 and 14.93%o± 0.84%o), whereas bigeye thresher shark has the highest level/values (4.5 and 17.02%o±1.21%o, respectively). The bigeye thresher shark has significantly higher 515N value than other shark species, indicating its higher trophic position. The blue shark and oceanic whitetip shark has significantly higher 813C values than bigeye thresher shark, silky shark and scalloped hammerhead, possibly due to different diets and/or living habitats. The stable isotope data and stomach content data are highly consistent, suggesting that sta-ble isotope analysis supplements traditional feeding ecology study of sharks, and thus contributes to understanding their trophic linkage.
基金funded by National Science Foundation of China (NSFC41276156)sponsored by Program of Shanghai Subject Chief Scientist (10XD-1402000)+3 种基金Foundation of Doctorate Programs of Ministry of Education of China (20093104110002)Shanghai Leading Academic Discipline Project (Fisheries Discipline)Y. Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar ProgramSupports from Xinshiji No. 52 for the scientific survey are gratefully acknowledged
文摘Beak of cephalopod is an important hard tissue. Understanding the morphology of beak can yield critical infor- mation on the role of cephalopods in the ecosystem. The south patagonic stock of the Argentine shortfin squid, Illex argentinus, is not only one of the most important fishing targets, but also one of the most important species in the marine eco-system of the southwest Atlantic. A total of 430 samples ofL argentinus, including 229 females 103-346mm in mantle length (ML) and 201 males 140-298mm in ML, were collected from the area off the Exclusive Economic Zone of Argentinean waters by Chinese squid jigging vessels during February to May 2007. The morphology of their beaks was evaluated. The relationships between beak morphological variables and ML differed significantly among males and females. They could be best described by loga- rithmic functions for females and linear functions for males except for upper wing length (UWL) and lower rostrum length (LRL), which followed exponential functions in their relationships with ML. The results showed the sexual dimorphism in the relationship between ML and beak morphology for the south patagonic stock ofL argentinus. However, no significant differ- ence was found between males and females in the relationships of beak morphological variables (except for UWL) versus body weight (BW), suggesting that the relationship between beak morphological variables and BW can be used for estimating the biomass consumed by their predators.