期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test 被引量:6
1
作者 Yilin Liu Chen Li +4 位作者 Lei Huang Yun He Tingting Zhao Bo Han Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1838-1846,共9页
Under the guidance of strain tolerance, a new combination method for crude oil-degrading bacterial consortium was studied. Firstly, more than 50 efficient crude oil-degrading and biosurfactant producing bacteria were ... Under the guidance of strain tolerance, a new combination method for crude oil-degrading bacterial consortium was studied. Firstly, more than 50 efficient crude oil-degrading and biosurfactant producing bacteria were isolated from petroleum-contaminated soil and water in Tianjin Binhai New Area Oilfield, China. Twenty-four of them were selected for further study. These strains were identified as belonging Pseudomonas aeruginosa, Bacillus subtilis, Brevibacillus brevis, Achromobacter sp., Acinetobacter venetianus, Lysinibacillus macroides, Klebsiella oxytoca, Stenotrophomonas rhizophila, Rhodococcus sp. and Bacillus thuringiensis. A shake-flask degradation test revealed that 12 of these strains could degrade over 50% of 1% crude oil concentration in 7 d. Of these, 8 strains were able to produce biosurfactants. Furthermore, environmental tolerance experiments indicated that the majority of the strains had the ability to adapt to extreme environments including high temperatures, alkaline environments and high salinity environments. A mixed bacterial agent comprising the strains WB2, W2, W3 and HA was developed based on the environmental tolerance tests and subjected to the pilot-scale degradation test indicating that this bacterial agent could degrade 85.2% of 0.8% crude oil concentration in 60 d. Our results suggest that the application of this mixed agent could remediate crude oil polluted soils in saline and alkaline environments. 展开更多
关键词 粗略的降级油的紧张 Biosurfactant 制片人 环境忍耐 飞行员规模 bioremediation
下载PDF
Computational fluid dynamics simulation of a novel bioreactor forsophorolipid production 被引量:1
2
作者 Xiaoqiang Jia Lin Qi +4 位作者 Yaguang Zhang Xue Yang Hongna Wang Fanglong Zhao Wenyu Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第6期732-740,共9页
This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)u... This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)used for sophorolipid(SL) production. To evaluate the role of hydrodynamics in reactor design, the comparisons between conventional fed-batch fermenter and DVDSB on the hydrodynamic behavior are predicted by the CFD methods. Important hydrodynamic parameters of the gas–liquid two-phase system such as the liquid phase velocity field, turbulent kinetic energy and volume-averaged overall and time-averaged local gas holdups were simulated and analyzed in detail. The numerical results were also validated by experimental measurements of overall gas holdups. The yield of sophorolipids was significantly improved to 484 g·L^(-1)with a 320 h fermentation period in the new reactor. 展开更多
关键词 Bioreactors Gas HOLD-UP COMPUTATIONAL FLUID dynamics (CFD)Hydrodynamics Sophorolipid production
下载PDF
Increased sedimentation of a Pseudomonas–Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates 被引量:1
3
作者 Chang Liu Lin Qi +2 位作者 Songyuan Yang Yun He Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1659-1665,共7页
Concerns about feasibility,separability,settleability,efficiency once hampered studies on polyhydroxyalkanoates(PHAs)production,which mainly focused on single strain microorganism or activated sludge rather than artif... Concerns about feasibility,separability,settleability,efficiency once hampered studies on polyhydroxyalkanoates(PHAs)production,which mainly focused on single strain microorganism or activated sludge rather than artificial microbial consortia.Here,a medium chain length PHAs(mcl-PHAs)producing Pseudomonas-Saccharomyces consortium with xylose as the main substrate was studied.Mcl-PHAs accumulation increased from 12.69 mg·L^-1 to 152.3 mg·L^-1 without any optimization method.The presence of Saccharomyces cerevisiae,though in a relatively low concentration,improved the sedimentation of cell mass of the mixed culture by 60%.Reasons for better sedimentation of the consortium were complex:first,the length of Pseudomonas putida increased two to three times in the consortium;second,the positive surface charge of P.putida was neutralized by S.cerevisiae;third,the adhesion proteins on the surface of S.cerevisiae interacted with the P.putida. 展开更多
关键词 MEDIUM chain length POLYHYDROXYALKANOATES Pseudomonas–Saccharomyces consortium SEDIMENTATION XYLOSE
下载PDF
n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil 被引量:5
4
作者 Xiaoqiang Jia Yun He +2 位作者 Lei Huang Dawei Jiang Wenyu Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期411-417,共7页
The high-molecular weight polycyclic aromatic hydrocarbons(PAHs) pyrene and typical long chain alkane nhexadecane are both difficult to degrade. In this study, n-hexadecane and pyrene degrading strain Rhodococcus sp. ... The high-molecular weight polycyclic aromatic hydrocarbons(PAHs) pyrene and typical long chain alkane nhexadecane are both difficult to degrade. In this study, n-hexadecane and pyrene degrading strain Rhodococcus sp. T1 was isolated from oil contaminated soil. Strain T1 could remove 90.81% n-hexadecane(2 vol%) and 42.79% pyrene(200 mg·L^(-1)) as a single carbon within 5 days, respectively. Comparatively, the degradation of pyrene increased to 60.63%, but the degradation of n-hexadecane decreased to 87.55% when these compounds were mixed. Additionally, identification and analysis of degradation metabolites of Rhodococcus sp. T1 in the above experiments showed that there were significant changes in alanine, methylamine, citric acid and heptadecanoic acid between sole and dual substrate degradation. The optimal conditions for degradation were then determined based on analysis of the pH, salinity, additional nutrient sources and liquid surface activity.Under the optimal conditions of pH 7.0, 35 °C, 0.5% NaCl, 5 mg·L^(-1) of yeast extract and 90 mg·L^(-1) of surfactant,the degradation increased in single or dual carbon sources. To our knowledge, this is the first study to discuss metabolite changes in Rhodococcus sp. T1 using sole substrate and dual substrate to enhance the long-chain alkanes and PAHs degradation potential. 展开更多
关键词 BIODEGRADATION Metabolite N-HEXADECANE PYRENE RHODOCOCCUS sp. T1
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部