Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmenta...Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.展开更多
Complex interactions based on host plant, rhizosphere microorganisms and soil microenvironment are presumed to be responsible for the suppressive properties of biochar against soil-borne diseases, although the underly...Complex interactions based on host plant, rhizosphere microorganisms and soil microenvironment are presumed to be responsible for the suppressive properties of biochar against soil-borne diseases, although the underlying mechanisms are not well understood. This study is designed to evaluate the efficacy of biochar amendment for controlling tomato bacterial wilt caused by Ralstonia solanacearum, and to explore the interactions between biochar-induced changes in rhizosphere compound composition, the pathogen and tomato growth. The results showed that biochar amendment decreased disease incidence by 61–78% and simultaneously improved plant growth. The positive ‘biochar effect' could be associated with enhanced microbial activity and alterations in the rhizosphere organic acid and amino acid composition. Specifically, elevated rhizosphere citric acid and lysine, but reduced salicylic acid, were induced by biochar which improved microbial activity and rendered the rhizosphere unsuitable for the development of R. solanacearum. In addition, nutrients which were either made more available by the stimulated microbial activity or supplied by the biochar could improve plant vigor and potentially enhance tomato resistance to diseases. Our findings highlight that biochar's ability to control tomato bacterial wilt could be associated with the alteration of the rhizosphere organic acid and amino acid composition, however, further research is required to verify these ‘biochar effects' in field conditions.展开更多
Bacterial wilt, caused by Ralstonia solanacearum(Rs) is a serious soil-borne disease and silicon can enhance tomato resistance against this disease. However, few studies have focused on the mechanisms of Si-mediated...Bacterial wilt, caused by Ralstonia solanacearum(Rs) is a serious soil-borne disease and silicon can enhance tomato resistance against this disease. However, few studies have focused on the mechanisms of Si-mediated pathogen resistance from the rhizosphere perspective. In this study, two tomato genotypes, HYT(susceptible) and H7996(resistant), were used to investigate the effects of silicon application on disease inhibition, root growth, and organic acid content in both roots and root exudates under R. solanacearum infection. The results showed that Si application significantly suppressed bacterial wilt in HYT, but had no effect in H7996. Silicon concentrations in roots, stems and leaves of tomato were significantly increased by Si treatment under R. solanacearum inoculation. In HYT, Si application increased root dry weight by 22.8-51.6% and leaf photosynthesis by 30.6-208.0%, and reduced the concentrations of citric acid in root exudates by 71.4% and in roots by 83.5%. However, organic acids did not influence R. solanacearum growth. Results also demonstrated that salicylic acid(SA) content in roots was significantly increased by silicon addition for H7996 and exogenous SA application could reduce bacterial wilt disease index. Collectively, these results suggest that Si-modulated phenolic compound metabolism in roots or root exudates, especially citric acid and SA, may be a potential mechanism in the amelioration of bacterial wilt disease by Si.展开更多
A 45 d pot experiment was conducted to examine the effects of silicon fertilizer or iron fertilizer on the growth of two typical Ipomoea aquatica cultivars(Daye and Liuye) and arsenic(As) accumuation of Daye and L...A 45 d pot experiment was conducted to examine the effects of silicon fertilizer or iron fertilizer on the growth of two typical Ipomoea aquatica cultivars(Daye and Liuye) and arsenic(As) accumuation of Daye and Liuye grown in As-contaminated soils at different As dosage levels. The results showed that the application of these two fertilizers generally enhanced the growth of the plants, which may be partly attributable to the reduction in As toxicity. The addition of these two fertilizers also significantly reduced the uptake of As by the plants though the iron fertilizer was more effective, as compared to the silicon fertilizer. The accumulation of As in shoot portion was weaker for Daye than for Liuye. The research findings obtained from this study have implications for developing cost-effective management strategies to minimize human health impacts from consumption of As-containing I. aquatica.展开更多
Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance t...Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal develop- ment indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up- regulated by chlorpyrifos,β-cypermethrin and methomyl with both lethal concentration at 15% (LC15) (50, 100 and 150 μg/mL, respectively) and 50%(LC50) dosages (100,200 and 300μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity ofchlorpyrifos,β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi- mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LCso dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura.展开更多
基金financially supported by grants of the Key Projects in the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD14B00)the Guangdong Provincial Science and Technology Plan Key Project,China(2012A020100003,2015A050502043)
文摘Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.
基金supported by the National Natural Science Foundation of China (31870420 and 41807084)the Natural Science Foundation of Guangdong Province, China (2017A030313177 and 2018A030310214)the Science and Technology Project of Guangdong Province, China (2019B030301007)。
文摘Complex interactions based on host plant, rhizosphere microorganisms and soil microenvironment are presumed to be responsible for the suppressive properties of biochar against soil-borne diseases, although the underlying mechanisms are not well understood. This study is designed to evaluate the efficacy of biochar amendment for controlling tomato bacterial wilt caused by Ralstonia solanacearum, and to explore the interactions between biochar-induced changes in rhizosphere compound composition, the pathogen and tomato growth. The results showed that biochar amendment decreased disease incidence by 61–78% and simultaneously improved plant growth. The positive ‘biochar effect' could be associated with enhanced microbial activity and alterations in the rhizosphere organic acid and amino acid composition. Specifically, elevated rhizosphere citric acid and lysine, but reduced salicylic acid, were induced by biochar which improved microbial activity and rendered the rhizosphere unsuitable for the development of R. solanacearum. In addition, nutrients which were either made more available by the stimulated microbial activity or supplied by the biochar could improve plant vigor and potentially enhance tomato resistance to diseases. Our findings highlight that biochar's ability to control tomato bacterial wilt could be associated with the alteration of the rhizosphere organic acid and amino acid composition, however, further research is required to verify these ‘biochar effects' in field conditions.
基金financially supported by grants from the National Natural Science Foundation of China (31370456)the Natural Science Foundation of Guangdong Province, China (2017A030313177)
文摘Bacterial wilt, caused by Ralstonia solanacearum(Rs) is a serious soil-borne disease and silicon can enhance tomato resistance against this disease. However, few studies have focused on the mechanisms of Si-mediated pathogen resistance from the rhizosphere perspective. In this study, two tomato genotypes, HYT(susceptible) and H7996(resistant), were used to investigate the effects of silicon application on disease inhibition, root growth, and organic acid content in both roots and root exudates under R. solanacearum infection. The results showed that Si application significantly suppressed bacterial wilt in HYT, but had no effect in H7996. Silicon concentrations in roots, stems and leaves of tomato were significantly increased by Si treatment under R. solanacearum inoculation. In HYT, Si application increased root dry weight by 22.8-51.6% and leaf photosynthesis by 30.6-208.0%, and reduced the concentrations of citric acid in root exudates by 71.4% and in roots by 83.5%. However, organic acids did not influence R. solanacearum growth. Results also demonstrated that salicylic acid(SA) content in roots was significantly increased by silicon addition for H7996 and exogenous SA application could reduce bacterial wilt disease index. Collectively, these results suggest that Si-modulated phenolic compound metabolism in roots or root exudates, especially citric acid and SA, may be a potential mechanism in the amelioration of bacterial wilt disease by Si.
基金financially supported by the National High-Tech R&D Program of China(863 Program,2013AA102402)the National Natural Science Foundation of China(41271469)the Science&Technology Planning Project of Guangdong Province,China(2013B020303001,2015A020208012)
文摘A 45 d pot experiment was conducted to examine the effects of silicon fertilizer or iron fertilizer on the growth of two typical Ipomoea aquatica cultivars(Daye and Liuye) and arsenic(As) accumuation of Daye and Liuye grown in As-contaminated soils at different As dosage levels. The results showed that the application of these two fertilizers generally enhanced the growth of the plants, which may be partly attributable to the reduction in As toxicity. The addition of these two fertilizers also significantly reduced the uptake of As by the plants though the iron fertilizer was more effective, as compared to the silicon fertilizer. The accumulation of As in shoot portion was weaker for Daye than for Liuye. The research findings obtained from this study have implications for developing cost-effective management strategies to minimize human health impacts from consumption of As-containing I. aquatica.
文摘Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal develop- ment indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up- regulated by chlorpyrifos,β-cypermethrin and methomyl with both lethal concentration at 15% (LC15) (50, 100 and 150 μg/mL, respectively) and 50%(LC50) dosages (100,200 and 300μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity ofchlorpyrifos,β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi- mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LCso dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura.