Tetrachloroethene (PCE) is biodegraded by reductive dechlorination with co-metabolism substrates under anaerobic conditions. By inoculating sludge from an anaerobic pool, a biodegradation test of PCE is conducted in...Tetrachloroethene (PCE) is biodegraded by reductive dechlorination with co-metabolism substrates under anaerobic conditions. By inoculating sludge from an anaerobic pool, a biodegradation test of PCE is conducted in the anaerobic condition. In the test, several substrates including methanol, ethanol, formate, acetate, lactate and glucose, are conducive to the conversion from PCE to TCE and 1,1-DCE. The results show the microbe can be cultivated well under the anaerobic circumstances of mixture of sewage (sludge) and soil with the index of COD after eleven days. Degradation of PCE accords with one order reaction kinetics equation. The sequence of the reaction rate constant is Kacetate 〉Kglucose 〉 Klactate 〉 Kethanol 〉 Kformate 〉 Kmethanol, and acetate is an outstanding co-metabolism substratum whose reaction rate constant is 0.6632d^-1.展开更多
Chlorinated hydrocarbons are widely detected in groundwater, but conventional removal methodologies are not time-and-cost effective. With the development of iron reducing technology in recent years, research on nano-i...Chlorinated hydrocarbons are widely detected in groundwater, but conventional removal methodologies are not time-and-cost effective. With the development of iron reducing technology in recent years, research on nano-iron and nano-bimetal has become a hot spot. The paper presents the results of impact factors on perchloroethylene (PCE) removal by nano-Ni/Fe method. The data show that the reaction rate of unexposed nano-Ni/Fe is 4 times higher than exposed one; and temperature is one of the important controlling factors. Reaction rate constant KSA increases by 2-3 times with every 10℃ increment of temperature. Within a specific range, higher Ni/Fe ratio favors dechlorination process. When the Ni/Fe is 8%, the dechlorination process reaches the highest rate. Dissoved oxygen in the solution does not favor the degradation of chlorinated hydrocarbons.展开更多
文摘Tetrachloroethene (PCE) is biodegraded by reductive dechlorination with co-metabolism substrates under anaerobic conditions. By inoculating sludge from an anaerobic pool, a biodegradation test of PCE is conducted in the anaerobic condition. In the test, several substrates including methanol, ethanol, formate, acetate, lactate and glucose, are conducive to the conversion from PCE to TCE and 1,1-DCE. The results show the microbe can be cultivated well under the anaerobic circumstances of mixture of sewage (sludge) and soil with the index of COD after eleven days. Degradation of PCE accords with one order reaction kinetics equation. The sequence of the reaction rate constant is Kacetate 〉Kglucose 〉 Klactate 〉 Kethanol 〉 Kformate 〉 Kmethanol, and acetate is an outstanding co-metabolism substratum whose reaction rate constant is 0.6632d^-1.
基金the National Natural Science Foundation of China (40572146) the project (2002BA906A28-1B) from the Ministry of Science and Technology of China.
文摘Chlorinated hydrocarbons are widely detected in groundwater, but conventional removal methodologies are not time-and-cost effective. With the development of iron reducing technology in recent years, research on nano-iron and nano-bimetal has become a hot spot. The paper presents the results of impact factors on perchloroethylene (PCE) removal by nano-Ni/Fe method. The data show that the reaction rate of unexposed nano-Ni/Fe is 4 times higher than exposed one; and temperature is one of the important controlling factors. Reaction rate constant KSA increases by 2-3 times with every 10℃ increment of temperature. Within a specific range, higher Ni/Fe ratio favors dechlorination process. When the Ni/Fe is 8%, the dechlorination process reaches the highest rate. Dissoved oxygen in the solution does not favor the degradation of chlorinated hydrocarbons.