The integration of artificial intelli-gence(AI)into chemical engineering marks a transformative era,redefin-ing traditional methodologies with AI-driven approaches.AI has emerged as a powerful ally in tackling complex...The integration of artificial intelli-gence(AI)into chemical engineering marks a transformative era,redefin-ing traditional methodologies with AI-driven approaches.AI has emerged as a powerful ally in tackling complex problems once considered insur-mountable.As chemical engineering grapples with increasingly complex systems and stringent sustainability targets,AI sets the stage for a new generation of solutions.展开更多
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro...In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.展开更多
As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,ag...As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.展开更多
The plasmonic photocatalyst of Pd supported on graphitic carbon nitride(Pd/g-C3N4)exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of f...The plasmonic photocatalyst of Pd supported on graphitic carbon nitride(Pd/g-C3N4)exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of formic acid(HCOOH)as proton source and triethylamine(TEA)as sacrificial electron donator.The chemical and configurational properties of the Pd/g-C3N4 were systematically analyzed with XRD,TEM and XPS.Under optimized conditions,27%yield of furfuryl alcohol with the corresponding turnover frequency(TOF)around 3.72 h^(-1) were obtained from furfural and TEA-HCOOH under visible-light irradiation by using Pd/g-C3N4.Our research additionally reveals that Pd atom is the true catalytic active site for the hydrogenation and the photo-promoted reduction mainly occurs through noble metal nanoparticles(NPs)-induced effect of surface plasmon resonance(SPR).The photo-catalytic system of Pd/g-C3N4 thus demonstrates a green and effective method for the hydrogenation of biomass-based aldehydes with sustainable solar energy as a driven force.展开更多
The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The ...The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.展开更多
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C...The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance.展开更多
Pestalotiopsis sp. J63, producing a high activity of laccase, is a new marine-derived fungus isolated from the oceanic sediment of the East China Sea. Since the marine environment is oligotrophic nutrient, marine deri...Pestalotiopsis sp. J63, producing a high activity of laccase, is a new marine-derived fungus isolated from the oceanic sediment of the East China Sea. Since the marine environment is oligotrophic nutrient, marine derived fungi may use small amount of nutrients to grow and produce laccases. Agricultural residues that are mainly composed of lignin, cellulose and hemicellulose are difficult to be degraded and few microbes can take them as substrates, so they are considered as oligotrophic nutrient and have the potential to be used to produce value added products. In this study, the ability of Pestalotiopsis sp. J63 to use agricultural residues to produce laccases was tested in the submerged fermentation. The combination of 3 g·L 1maltose and 20 g·L 1rice straw was the best carbon sources and 8 g·L 1ammonium sulfate was the best nitrogen source under the condition without inducers. The effects of five inducers, the feeding time and concentration of inducer on laccase production were investigated.Adding 0.09 mmol·L 1phenol after 24 h of incubation led to high laccase activity(5089 U·L 1), while with 0.09mmol·L 1phenol in the medium and wheat bran as the nitrogen source, the laccase activity could reach 5791.7U·L 1. Native-PAGE results showed that two laccase isozymes were present in the cultures. One existed in both induced and non-induced culture filtrates, while the other was only found in the fermentation with the addition of phenol, guaiacol and veratryl alcohol.展开更多
In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Asp...In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.展开更多
Catalytic transformation of glycerol to value-added products has attracted the attention of scientists all over the world. Among various transformations, selective oxidation of glycerol with molecular oxygen to dihydr...Catalytic transformation of glycerol to value-added products has attracted the attention of scientists all over the world. Among various transformations, selective oxidation of glycerol with molecular oxygen to dihydroxyacetone, glyceric acid, glyceraldehydes, and tartronic acid is challenging both from the viewpoint of academic research and industrial application. Herein, we review the recent progresses in the selective oxidation of glycerol under base-free conditions. Those catalysts widely reported for the selective oxidation of the terminal hydroxyl and secondary hydroxyl groups in glycerol, such as monometallic Au, Pt, and Pd NPs, and bimetallic Au-Pt, Au-Pd, Pt-Bi, Pt-Sb, and Pt-Cu, were compared and discussed in detail. The reaction mechanism over Pt-based catalysts, possible catalyst deactivation, and the corresponding improvements are presented. Further, the recent progresses in the continuous oxidation of glycerol in fixed bed reactors and its excellent selectivity in the formation of dihydroxyacetone are highlighted.展开更多
Hydrogenation of carbazole and N-ethylcarbazole over Raney-Ni catalyst were realized in the temperature range of 393-503 K. 4[H] adduct dominated the hydrogenation products and the formation of 2[H] adduct was the rat...Hydrogenation of carbazole and N-ethylcarbazole over Raney-Ni catalyst were realized in the temperature range of 393-503 K. 4[H] adduct dominated the hydrogenation products and the formation of 2[H] adduct was the rate-limiting step during the period, in which the conversion of carbazole was less than 40%. The hydrogenation process followed pseudo-first-order kinetics and the hydrogenation activation energies of carbazole and N-ethylcarbazole were 90 kJ/mol and 115 kJ/mol, respectively. The reaction starting position as well as the pathway of the hydrogenation of (N-ethyl)carbazole were investigated by comparing the kinetic characteristics of hydrogen uptake of carbazole and N- ethylcarbazole. The results showed that the reaction was a stepwise hydrogenation process and the first H_2 was added to the C1 = C10 double bond in the hydrogenation.展开更多
Bioactive natural products are a main source of new drugs,functional foods and food additives.The separation of bioactive natural products plays an important role in transformation and use of biomass.The isolation and...Bioactive natural products are a main source of new drugs,functional foods and food additives.The separation of bioactive natural products plays an important role in transformation and use of biomass.The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products,so a series of extraction and separation techniques have been developed.This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coefficients,recent extraction techniques and isolation techniques.This overview of recent technological advances,discussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.展开更多
Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could ...Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.展开更多
To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from...To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.展开更多
In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effe...In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.展开更多
Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepent...Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.展开更多
Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a h...Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.展开更多
The solubility of nonivamide in dimethyl sulfoxide, methanol, acetone, ethyl acetate, methyl tert-butyl ether, acetonitrile, n-hexane and water over the temperature range of 293.2 K to 323.2 K was measured. The result...The solubility of nonivamide in dimethyl sulfoxide, methanol, acetone, ethyl acetate, methyl tert-butyl ether, acetonitrile, n-hexane and water over the temperature range of 293.2 K to 323.2 K was measured. The results reveal that the solubility of nonivamide is greatly influenced by the hydrogen-bond basicity of solvent and increases with temperature. The experimental data were correlated with the modified Apelblat equation. The dissolution enthalpy and entropy of nonivamide in different solvents were obtained from the correlation of lnx with 1/T using the van't Hoff equation. The calculated nonivamide solubility is in good agreement with experimental data for most of the solvents.展开更多
In the present work, a series of Pt-based catalysts, alloyed with a second metal, i.e., Re, Sn, Er, La, and Y, and supported on activated carbon, ordered mesoporous carbon, N-doped mesoporous carbon or reduced graphen...In the present work, a series of Pt-based catalysts, alloyed with a second metal, i.e., Re, Sn, Er, La, and Y, and supported on activated carbon, ordered mesoporous carbon, N-doped mesoporous carbon or reduced graphene oxide(rGO), have been developed for selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Re and rGO were proved to be the most favorable metal dopant and catalyst support, respectively. Pt_(50) Re_(50)/rGO showed the highest cinnamylalcohol selectivity of 89% with 94% conversion of cinnamaldehyde at the reaction conditions of 120 °C, 2.0 MPaH_2 and 4 h.展开更多
Selective oxidation of glycerol with molecular oxygen in base-free aqueous solutions has become a hot topic,as the rapidly increasing production of biodiesel is creating a surplus of glycerol.In this work,an N-doped-c...Selective oxidation of glycerol with molecular oxygen in base-free aqueous solutions has become a hot topic,as the rapidly increasing production of biodiesel is creating a surplus of glycerol.In this work,an N-doped-carbon-supported core-shell structured Sb@PtSb2 hybrid catalyst was prepared via a facile synthesis route,in which a mixture of glucose,melamine,and SbCl3(Sb-NC)was pyrolyzed,then impregnated with Pt by immersion in an aqueous solution of H2PtCl6,and further treated in hydrogen flow.Characterization of the catalyst products indicated that introducing SbCl3 can increase the surface area of the binary glucose+melamine pyrolyzed support(NC),and Sb@PtSb2 hybrids could be formed on the surface of an Sb-NC support during hydrogen treatment at 700℃.It was found that the Sb@PtSb2/NC catalyst was more active for the selective oxidation of glycerol in a base-free aqueous solution than Sb-free NC-supported Pt(Pt/NC).Further characterization also indicated that the promising performance of Sb@PtSb2/NC might be attributed to its enhanced oxygen activation.展开更多
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
文摘The integration of artificial intelli-gence(AI)into chemical engineering marks a transformative era,redefin-ing traditional methodologies with AI-driven approaches.AI has emerged as a powerful ally in tackling complex problems once considered insur-mountable.As chemical engineering grapples with increasingly complex systems and stringent sustainability targets,AI sets the stage for a new generation of solutions.
文摘In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted.
基金the financial support from the National Natural Science Foundation of China(U1810111,51872124 and21676116)Natural Science Foundation of Guangdong Province,China(2018B030311010)+1 种基金the Fundamental Research Funds for the Central Universities(21617431)Key Laboratory of Biomass Chemical Engineering of Ministry of Education,Zhejiang University(2018BCE002)
文摘As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.
基金We are grateful for the financial support from National Natural Science Foundation of China(U1810111,21676089)Natural Science Foundation of Guangdong Province,China(2018B030311010)+1 种基金Youth Science and Technology Innovation Talent of Guangdong TeZhi Plan(2019TQ05L111)Key Laboratory of Biomass Chemical Engineering of Ministry of Education,Zhejiang University(2018BCE002).
文摘The plasmonic photocatalyst of Pd supported on graphitic carbon nitride(Pd/g-C3N4)exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of formic acid(HCOOH)as proton source and triethylamine(TEA)as sacrificial electron donator.The chemical and configurational properties of the Pd/g-C3N4 were systematically analyzed with XRD,TEM and XPS.Under optimized conditions,27%yield of furfuryl alcohol with the corresponding turnover frequency(TOF)around 3.72 h^(-1) were obtained from furfural and TEA-HCOOH under visible-light irradiation by using Pd/g-C3N4.Our research additionally reveals that Pd atom is the true catalytic active site for the hydrogenation and the photo-promoted reduction mainly occurs through noble metal nanoparticles(NPs)-induced effect of surface plasmon resonance(SPR).The photo-catalytic system of Pd/g-C3N4 thus demonstrates a green and effective method for the hydrogenation of biomass-based aldehydes with sustainable solar energy as a driven force.
基金supported by the National Key Research and Development Program of China(2021YFC2103800)the National Natural Science Foundation of China(U21A20301)the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2022RCZX004 and IZQ2021RCZX015)。
文摘The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.
基金supported by the National Key Research and Development Program of China(2022YFB3806800)the National Natural Science Foundation of China(22122811,22008209)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SZ-TD008).
文摘The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance.
基金Supported by the National Natural Science Foundation of China (21036005) and Scientific and Technology Plan of Zhejiang Province (2011C33016).
文摘Pestalotiopsis sp. J63, producing a high activity of laccase, is a new marine-derived fungus isolated from the oceanic sediment of the East China Sea. Since the marine environment is oligotrophic nutrient, marine derived fungi may use small amount of nutrients to grow and produce laccases. Agricultural residues that are mainly composed of lignin, cellulose and hemicellulose are difficult to be degraded and few microbes can take them as substrates, so they are considered as oligotrophic nutrient and have the potential to be used to produce value added products. In this study, the ability of Pestalotiopsis sp. J63 to use agricultural residues to produce laccases was tested in the submerged fermentation. The combination of 3 g·L 1maltose and 20 g·L 1rice straw was the best carbon sources and 8 g·L 1ammonium sulfate was the best nitrogen source under the condition without inducers. The effects of five inducers, the feeding time and concentration of inducer on laccase production were investigated.Adding 0.09 mmol·L 1phenol after 24 h of incubation led to high laccase activity(5089 U·L 1), while with 0.09mmol·L 1phenol in the medium and wheat bran as the nitrogen source, the laccase activity could reach 5791.7U·L 1. Native-PAGE results showed that two laccase isozymes were present in the cultures. One existed in both induced and non-induced culture filtrates, while the other was only found in the fermentation with the addition of phenol, guaiacol and veratryl alcohol.
基金Supported by the National Natural Science Foundation of China(No.21376214)
文摘In order to improve the efficient decolorization of dye-containing water by biosorbent and understand the biosorption mechanism, the self-immobilization mycelial pellets were prepared using a marine-derived fungus Aspergillus niger ZJUBE-1, and an azo dye, Congo red was chosen as a model dye to investigate batch decolorization efficiency by pellets. The pellets as biosorbent showed strong salt and acid tolerance in biosorption process. The results for dye adsorption showed that the biosorption process fitted well with models of pseudo-second-order kinetic and Langmuir isotherm, with a maximum adsorption capacity of 263.2 mg·g^(-1) mycelium. During 6 batches of continuous decolorization operation, the mycelial pellets could possess efficient decolorization abilities(>98.5%).The appearance of new peak in the UV–Vis spectral result indicated that the decolorization process may also contain biodegradation. The mechanism studies showed that efficient biosorption ability of pellets only relies on the active zone on the surface of the pellet, which can be enhanced by nutrition supplement or be shifted outward by a reculture process.
基金supported by the National Natural Science Foundation of China(21773208,21473155)the Natural Science Foundation of Zhejiang Province(L12B03001)~~
文摘Catalytic transformation of glycerol to value-added products has attracted the attention of scientists all over the world. Among various transformations, selective oxidation of glycerol with molecular oxygen to dihydroxyacetone, glyceric acid, glyceraldehydes, and tartronic acid is challenging both from the viewpoint of academic research and industrial application. Herein, we review the recent progresses in the selective oxidation of glycerol under base-free conditions. Those catalysts widely reported for the selective oxidation of the terminal hydroxyl and secondary hydroxyl groups in glycerol, such as monometallic Au, Pt, and Pd NPs, and bimetallic Au-Pt, Au-Pd, Pt-Bi, Pt-Sb, and Pt-Cu, were compared and discussed in detail. The reaction mechanism over Pt-based catalysts, possible catalyst deactivation, and the corresponding improvements are presented. Further, the recent progresses in the continuous oxidation of glycerol in fixed bed reactors and its excellent selectivity in the formation of dihydroxyacetone are highlighted.
基金supported by the National Natural Science Foundation of China(U1162127,U1462201,21076189,21476202 and 21276231)
文摘Hydrogenation of carbazole and N-ethylcarbazole over Raney-Ni catalyst were realized in the temperature range of 393-503 K. 4[H] adduct dominated the hydrogenation products and the formation of 2[H] adduct was the rate-limiting step during the period, in which the conversion of carbazole was less than 40%. The hydrogenation process followed pseudo-first-order kinetics and the hydrogenation activation energies of carbazole and N-ethylcarbazole were 90 kJ/mol and 115 kJ/mol, respectively. The reaction starting position as well as the pathway of the hydrogenation of (N-ethyl)carbazole were investigated by comparing the kinetic characteristics of hydrogen uptake of carbazole and N- ethylcarbazole. The results showed that the reaction was a stepwise hydrogenation process and the first H_2 was added to the C1 = C10 double bond in the hydrogenation.
基金Supported by the National'Natural Science Foundation of China (20936005, 21076175 and 21076178), the National High Technology Research and Development Program of China (2012AA040211), and the Program for Zhejiang Leading Team of S&T Innovation (2011R50002).
文摘Bioactive natural products are a main source of new drugs,functional foods and food additives.The separation of bioactive natural products plays an important role in transformation and use of biomass.The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products,so a series of extraction and separation techniques have been developed.This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coefficients,recent extraction techniques and isolation techniques.This overview of recent technological advances,discussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.
基金Supported by the National Natural Science Foundation of China(21722609,21776240)Zhejiang Provincial Natural Science Foundation of China(LR17B060001)
文摘Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.
基金supported by the National High Technology Research and Development Program of China(2009AA044701)the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)
文摘To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.
基金supported by the National Key Research and Development Plan of China (2016YFC0204700)National Natural Science Foundation of China (NSFC-51578488)+3 种基金Zhejiang Provincial "151" Talents Program (2013)Key Project of Zhejiang Provincial Science and Technology Programthe Program for Zhejiang Leading Team of S&T Innovation (2013TD07)the Changjiang Scholar Incentive Program (2009)~~
文摘In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ12E08002)
文摘Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.
文摘Conventional synthesis of monolith-supported zeolite catalysts is based on a hydrothermal strategy.Here,we report a solvent-free crystallization process to coat ZSM-5 zeolite crystals on a monolithic SiC foam with a honeycomb structure(ZSM-5/SiC).Characterizations of the ZSM-5/SiC by scanning electron microscopy,N2 sorption,and X-ray diffraction indicate that the zeolite sheath has been ideally coated on the surface of the SiC foam with high purity and crystallinity.Fixing Pd nanoparticles within the ZSM-5 zeolite crystals delivers a bifunctional Pd@ZSM-5/SiC catalyst,which exhibits high activity and selectivity toward diesel range paraffins in the hydrodeoxygenation of methyl oleate,a model molecule for biofuel.In comparison to the powder Pd@ZSM-5,the Pd@ZSM-5/SiC monolith catalyst shows more efficiency,which is attributed to the fast mass transfer and high heat conductivity on the honeycomb SiC structure.The durability test indicates that the Pd@ZSM-5/SiC catalyst is stable under the reaction and high-temperature regeneration conditions.
基金Supported by the National Natural Science Foundation of China(20936005,21222601)the National High Technology Research and Development Program of China(2012AA040211)
文摘The solubility of nonivamide in dimethyl sulfoxide, methanol, acetone, ethyl acetate, methyl tert-butyl ether, acetonitrile, n-hexane and water over the temperature range of 293.2 K to 323.2 K was measured. The results reveal that the solubility of nonivamide is greatly influenced by the hydrogen-bond basicity of solvent and increases with temperature. The experimental data were correlated with the modified Apelblat equation. The dissolution enthalpy and entropy of nonivamide in different solvents were obtained from the correlation of lnx with 1/T using the van't Hoff equation. The calculated nonivamide solubility is in good agreement with experimental data for most of the solvents.
基金Supported by the National Natural Science Foundation of China(21476211)the Zhejiang Provincial Natural Science Foundation of China(LY16B060004 and LY18B060016)
文摘In the present work, a series of Pt-based catalysts, alloyed with a second metal, i.e., Re, Sn, Er, La, and Y, and supported on activated carbon, ordered mesoporous carbon, N-doped mesoporous carbon or reduced graphene oxide(rGO), have been developed for selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Re and rGO were proved to be the most favorable metal dopant and catalyst support, respectively. Pt_(50) Re_(50)/rGO showed the highest cinnamylalcohol selectivity of 89% with 94% conversion of cinnamaldehyde at the reaction conditions of 120 °C, 2.0 MPaH_2 and 4 h.
基金financially supported by the National Natural Science Foundation of China(21773206 and 21473155)Natural Science Foundation of Zhejiang Province(L12B03001)~~
文摘Selective oxidation of glycerol with molecular oxygen in base-free aqueous solutions has become a hot topic,as the rapidly increasing production of biodiesel is creating a surplus of glycerol.In this work,an N-doped-carbon-supported core-shell structured Sb@PtSb2 hybrid catalyst was prepared via a facile synthesis route,in which a mixture of glucose,melamine,and SbCl3(Sb-NC)was pyrolyzed,then impregnated with Pt by immersion in an aqueous solution of H2PtCl6,and further treated in hydrogen flow.Characterization of the catalyst products indicated that introducing SbCl3 can increase the surface area of the binary glucose+melamine pyrolyzed support(NC),and Sb@PtSb2 hybrids could be formed on the surface of an Sb-NC support during hydrogen treatment at 700℃.It was found that the Sb@PtSb2/NC catalyst was more active for the selective oxidation of glycerol in a base-free aqueous solution than Sb-free NC-supported Pt(Pt/NC).Further characterization also indicated that the promising performance of Sb@PtSb2/NC might be attributed to its enhanced oxygen activation.
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.